Abstract:
The present invention provides polyolefin resin particles that are capable of producing expanded polyolefin resin beads having a favorable fine cell structure, expanded polyolefin resin beads that suffer less volume shrinkage under a high temperature environment and are excellent in recovery property on repeated compression, and a method for producing the expanded beads. The polyolefin resin particles of the present invention have a peak temperature (T1) of a melting peak on first heating in a DSC curve obtained by heating the resin particles from 20° C. to 200° C. at a heating rate of 10° C./min that is higher by 1.5° C. or more than a peak temperature (T2) of a melting peak on second heating in a DSC curve obtained by, subsequent to the first heating, cooling the resin particles from 200° C. to 20° C. at a cooling rate of 10° C./min, and then heating the resin particles from 20° C. to 200° C. at a heating rate of 10° C./min. The method for producing expanded polyolefin resin beads of the present invention includes: a step of preparing preliminary resin particles containing a polyolefin resin; a step of heat-treating the preliminary resin particles at a temperature that is higher by from 15 to 25° C. than a melting point of the preliminary resin particles, so as to produce resin particles; and a step of expanding the resin particles.
Abstract:
A method for producing a skin-covered foamed molded article includes blow molding a parison into a skin and heating expanded polystyrene beads filled in a hollow space of the skin to form a foam layer fuse-bonded to the skin, polystyrene resin composition having specific Charpy impact strength, MFR and branching degree. The skin of the skin-covered foamed molded article is formed of the specific polystyrene resin composition.
Abstract:
A method for producing a multi-layer foam sheet having a foam layer and a resin layer laminated on at least one side of the foam layer, includes coextruding a foamable molten resin composition which contains a low density polyethylene and a physical blowing agent and a molten resin composition which contains 80 to 20% by weight of a specific ethylene-propylene random copolymer and 20 to 80% by weight of a specific polyethylene resin so that the foamable molten resin composition forms the foam layer and the molten resin composition forms the resin layer.
Abstract:
An expandable composite resin bead comprises: a composite resin containing a polyethylene resin and a polystyrene resin; and a blowing agent impregnating the composite resin. The composite resin contains 5 to 20 mass % of the polyethylene resin and 80 to 95 mass % of the polystyrene resin. The blowing agent is an organic physical blowing agent. Furthermore, in the expandable composite resin bead, a predetermined swelling degree in methyl ethyl ketone at a temperature of 23° C. is not lower than 1.25.
Abstract:
Provided are: expandable acrylic resin bead and expanded acrylic resin bead, both having excellent moldability and capable of providing a foamed molded article that generates less soot during combustion and has a low decomposition gas generation speed; and a foamed molded article obtained through in-mold molding the expanded acrylic resin beads. The expandable acrylic resin bead is composed of an acrylic resin and a physical blowing agent impregnated therein. The acrylic resin contains a methacrylic ester component (A) and an acrylic ester component (B). The content of the component (A) is 85 to 99 mol % with respect to a total 100 mol % of the component (A) and the component (B). At least one of the component (A) and the component (B) contains a component having a polycyclic saturated hydrocarbon group. The glass transition temperature of the acrylic resin is 112 to 125° C.
Abstract:
Provided are: expandable acrylic resin bead and expanded acrylic resin bead, both having excellent moldability and capable of providing a foamed molded article that generates less soot during combustion and has a low decomposition gas generation speed; and a foamed molded article obtained through in-mold molding the expanded acrylic resin beads.The expandable acrylic resin bead is composed of an acrylic resin and a physical blowing agent impregnated therein. The acrylic resin contains a methacrylic ester component (A) and an acrylic ester component (B). The content of the component (A) is 85 to 99 mol % with respect to a total 100 mol % of the component (A) and the component (B). At least one of the component (A) and the component (B) contains a component having a polycyclic saturated hydrocarbon group. The glass transition temperature of the acrylic resin is 112 to 125° C.
Abstract:
A method for producing a skin-covered foamed molded article, including blow-molding a parison of a polypropylene-based resin composition into a skin defining a hollow space, placing thermoplastic resin expanded beads in the hollow space, and heating the expanded beads placed in the hollow space to fuse-bond the expanded beads together, wherein the polypropylene-based resin composition has a tensile elongation at break at 80° C. of 300 to 1,000% and a half-crystallization time at 130° C. of 5 to 50 seconds.
Abstract:
A duct of a foamed blow-molded article that is constituted of a polyolefin-based resin with a bending elastic modulus of 800-1,300 MPa, that has an average apparent density (D) of 0.1 to 0.4 g/cm3 and an average thickness (T) [cm] providing D×T2 of 0.005 to 0.04 g/cm, and that has an outer surface side region and an inner surface side region having an average apparent density lower than that of the outer surface region.
Abstract translation:一种发泡吹塑制品的导管,其由弯曲弹性模量为800-1,300MPa的聚烯烃类树脂构成,其平均表观密度(D)为0.1〜0.4g / cm 3,平均厚度( T)[cm],提供0.005至0.04g / cm 3的D×T2,并且具有外表面侧区域和具有低于外表面区域的平均视在密度的内表面侧区域。
Abstract:
An inorganic filler-containing, polyolefin-based resin expanded bead having an expanded core layer of a first polyolefin-based resin, and a cover layer of a second polyolefin-based resin that covers the expanded core layer, wherein a weight ratio of the cover layer to the expanded core layer is 1:99 to 20:80, the expanded core layer contains an inorganic filler in a weight percentage amount of 5 to 90%, and the cover layer contains no inorganic filler or contains an inorganic filler in a weight percentage amount lower than that in the expanded core layer.
Abstract:
A method for producing a skin-covered polyolefin-based resin foamed molded article, including blow-molding a polyolefin parison into a skin defining a hollow space; and placing multi-layered polyolefin expanded beads in the hollow space; and heating the expanded beads placed in the hollow space to fuse-bond the expanded beads together and to fuse-bond the expanded beads to the skin, wherein the expanded beads have specific apparent density, specific average diameter, specific endothermic peaks in their DSC curve and specific melting point characteristics.