Abstract:
One embodiment relates to a method for metrology using an electron beam apparatus. At least one region of interest is selected in a field of view at a magnification level. Scanning parameters are determined to selectively scan over the at least one regions of interest under the magnification level of the field of view. The electron beam is selectively scanned over the at least one region of interest to capture image data from the at least one region of interest while maintaining the magnification level of the field of view. Other embodiments are also disclosed.
Abstract:
The present invention is a hybrid technique for finding defects on digitized device images using a combination of spatial domain and frequency domain techniques. The two dimensional spectra of two images are found using Fourier like transforms. Any strong harmonics in the spectra are removed, using the same spectral filter on both spectra. The images are then aligned, transformed back to the spatial domain, and subtracted. The resulting spectrally-filtered difference image is thresholded and analyzed for defects. Use of the hybrid technique of the present invention to process digitized images results in the highest-performance and most flexible defect detection system. It is the best performer on both array and random devices, and it can cope with problems such as shading variations and the dark-bright problem that no other technique can address. The hybrid technique of the present invention also uses frequency domain techniques to align the images with fewer errors than spatial domain techniques of similar or lesser complexity. Further, the relative offsets of the pairs of images are determined by frequency domain techniques—and this method may be the most accurate and the least expensive.
Abstract:
A system and method for coherent optical inspection are described. In one embodiment, an illuminating beam illuminates a sample, such as a semiconductor wafer, to generate a reflected beam. A reference beam then interferes with the reflected beam to generate an interference pattern at a detector, which records the interference pattern. The interference pattern may then be compared with a comparison image to determine differences between the interference pattern and the comparison image. According to another aspect, the phase difference between the reference beam and the reflected beam may be adjusted to enhance signal contrast. Another embodiment provides for using differential interference techniques to suppress a regular pattern in the sample.
Abstract:
A dark field surface inspection tool and system are disclosed herein. The tool includes an illumination source capable of scanning a light beam onto an inspection surface. Light scattered by each inspection point is captured as image data by a photo detector array arranged at a fourier plane. The images captured are adaptively filtered to remove a portion of the bright pixels from the images to generate filtered images. The filtered images are then analyzed to detect defects in the inspection surface. Methods of the invention include using die-to-die comparison to identify bright portions of scattering patterns and generate unique image filters associated with those patterns. The associated images are then filtered to generate filtered images which are then used to detect defects. Also, data models of light scattering behavior can be used to generate filters.
Abstract:
An inspection tool embodiment includes an illumination source for directing a light beam onto a workpiece to generate scattered light that includes the ordinary scattering pattern of the workpiece as well as light scattered from defects of the workpiece. The embodiment includes a programmable light selection array that receives light scattered from the workpiece and selectively directs the light scattered from defects onto a photosensor which detects the defect signal. Processing circuitry receives the defect signal and conducts surface analysis of the workpiece that can include the characterizing of defects of the workpiece. The programmable light selection arrays can include, but are not limited to, reflector arrays and filter arrays. The invention also includes associated surface inspection methods.
Abstract:
A method for measuring a characteristic of a substrate, including directing an incident beam at an inspection grid of points on the substrate, receiving the reflected beam with a position sensitive detector, measuring the displacement of the reflected beam from its expected location, compiling a database of the displacement measurements, examining the database for effects of a pattern induced anomaly in the displacement measurements, producing an adjusted database, and deriving the characteristic of the substrate from the adjusted database. Thus, pattern induced errors from the displacement measurements are corrected. In this manner, problems with interpreting the reflection angles of a beam in substrate stress analysis equipment are overcome where distortions in the reflection angles are caused by deposition patterns on the substrates.
Abstract:
A method of determining the actual properties of a film stack. An incident beam of light is directed towards the film stack, such that the incident beam of light is reflected from the film stack as a reflected beam of light. The actual properties of the reflected beam of light are measured, and properties of the film stack are estimated. A mathematical model of the film stack is solved with the estimated properties of the film stack to yield theoretical properties of the reflected beam of light. The theoretical properties of the reflected beam of light are compared to the actual properties of the reflected beam of light to yield a cost function. The estimated properties of the film stack are iteratively adjusted and the mathematical model is iteratively solved until the cost function is within a desired tolerance. The estimated properties of the film stack are reported as the actual properties of the film stack. A method based on analytical derivatives, and not numerically computed derivatives, of solutions to Maxwell's equations that are at least partially expressible as complex exponential matrices is used to iteratively adjust the estimated properties of the film stack.
Abstract:
Spatial filtering is disclosed that improves the signal to noise ration of a sample inspection system of the type having a detector and collection optics that receive radiation scattered from a point on a sample surface and direct the scattered radiation toward the detector. The spatial filtering may screen the detector from substantially all of the forward-scattered radiation from back-scattered radiation that is scattered in a at an elevation angle less than about 45° with respect to a normal to the surface. Forward scattered noise is screened from the detector while backscattered signal reaches the detector. Programmable spatial filters may be used to selectively block scattered noise due to surface roughness while transmitting scattered signal due to surface defects.
Abstract:
A method and apparatus for inspection and review of defects is disclosed wherein data gathering is improved. In one embodiment, multiple or segmented detectors are used in a particle beam system.
Abstract:
Faster and more accurate techniques for displaying images are described. The techniques can be applied in various applications that include semiconductor fabrication processes. The invention uses preprocessed images to generate a user-selected image in order to increase the speed of image processing. The invention displays the pixels forming an image using grayscale shading in order to improve the accuracy of displaying the patterns used in photolithography processes. The techniques of the present invention can be used to display images that represent lithography patterns stored within memory devices or to display images captured by inspection or metrology devices.