Abstract:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.
Abstract:
In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.
Abstract:
A memory cell (110) has a select gate (140) and at least two floating gates (160). A gate dielectric (150) for the floating gates (160) is formed by thermal oxidation simultaneously with as a dielectric on a surface of the select gate (140). The dielectric thickness on the select gate is controlled by the dopant concentration in the select gate. Other features are also provided.
Abstract:
A method of forming a multilayer electrode capacitor is described. A trench is formed in a substrate or in an insulator layer. Two sets of conductive layers are deposited on the inner surface of the trench. The first set of conductive layers is electrically connected to each other, and so is the second set of conductive layers. Each of the second set of conductive layers is inserted between two first conductive layers, and dielectric layers are interposed between two conductive layers to form a multilayer electrode capacitor.
Abstract:
In fabrication of a nonvolatile memory cell having two floating gates, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed, simultaneously. In a nonvolatile memory having a memory cell with two floating gates, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness.
Abstract:
A method for manufacturing a semiconductor device that comprises defining a semiconductor substrate, forming a gate oxide on the semiconductor substrate, forming a polycrystalline silicon layer over the gate oxide, forming a tungsten silicide layer over the polycrystalline silicon layer; providing a mask over the tungsten silicide layer, defining the mask to expose at least one portion of the tungsten silicide layer, etching the exposed tungsten silicide layer with a first etchant, wherein some tungsten silicide layer remains, etching the remaining tungsten silicide layer with a second etchant to expose at least one portion of the polycrystalline silicon layer, annealing the tungsten silicide layer, etching the exposed polycrystalline silicon layer, and oxidizing sidewalls of the tungsten silicide layer and the polycrystalline silicon layer.
Abstract:
A DRAM memory cell and a method of making a DRAM memory cell are provided. The DRAM memory cell includes a semiconductor substrate, including a trench formed therein and a buried plate region, at least a first doped region and a second doped region provided on a sidewall of the trench above the buried plate region in the substrate, where the first doped region contains carbon and the second doped region contains germanium provided in a portion of the first region, a dielectric layer formed on the bottom and sidewall of the trench, at least one polysilicon layer deposited in the trench and on the dielectric layer to cover the dielectric layer, and a transistor formed on a surface of the semiconductor substrate.
Abstract:
The present invention discloses a stacked capacitor having interdigital electrodes and method for preparing the same. The stacked capacitor comprises a first interdigital electrode, a second interdigital electrode and a dielectric material sandwiched between the first interdigital electrode and the second interdigital electrode. The first and the second interdigital electrodes comprise a body and a plurality of fingers electrically connected to the body, and the dielectric material can be silicon nitride or silicon oxide. Preferably, fingers of the first interdigital electrode are made of titanium nitride, while fingers of the second interdigital electrode are made of polysilicon. The body of the first and the second interdigital electrodes are preferably made of titanium nitride.
Abstract:
A dynamic random access memory (DRAM) cell is described, including a semiconductor pillar on a substrate, a capacitor on a lower portion of a sidewall of the pillar, and a vertical transistor on an upper portion of the sidewall of the pillar. The vertical transistor includes a first doped region, a second doped region, a gate and a gate insulating layer. The first doped region is located in the sidewall and is coupled with the capacitor. The second doped region is located in a top portion of the pillar. The gate is disposed on the sidewall of the pillar between the first and the second doped regions, and the gate insulating layer is disposed between the sidewall and the gate.
Abstract:
A system for determining lithography overlay offsets is described. The system comprises a first database, a second database, and a controller. The first database stores operation records of lots processed consecutively by an exposure tool, wherein each lot corresponds to a layer of a product, and the operation records pertain to a subsequent lot Lk and a previous lot Lk-1 corresponding to products A and B, respectively. The second database stores overlay information of lots corresponding to the products A and B, comprising overlay information DA,X and DB,Y corresponding to Xth and yth records of products A and B. The controller determines the overlay offset corresponding to lot Lk according to the overlay information DA,X and DB,Y.