Abstract:
The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.
Abstract:
The present invention relates to a process for forming cobalt nanoparticles and coating them with copper or copper oxide, in which process a copper salt is mixed to a cobalt salt so that the formed salt mixture obtains a cobalt:copper ratio of >1:1, and a reduction is carried out with a reducing gas, whereby nanoparticles are formed while a coating is formed onto their surface.
Abstract:
Described herein are methods of controlling metal nanowire morphologies by adjusting the reaction conditions of a polyol synthesis. In particular, by purging the reaction with an inert gas, batch-to-batch consistency can be achieved.
Abstract:
Suppression or enhancement of various properties of a liquid fluid is aimed by improving uniform dispersion of nanoparticles by means of making a state in which no oxidized film exists on the surfaces of the nanoparticles to be dispersed in the liquid fluid. The location of the liquid fluid is confirmed with ease by enhancing the brightness of light emission of the fluid through uniform dispersion of the nanoparticles in the liquid fluid containing a material having a flame reaction. In this way, as to liquid fluids utilized in various industries, it is possible to offer a technology to desirably enhance or suppress a property desired to be enhanced and a property desired to be suppressed among various properties that its constituents have.
Abstract:
Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
Abstract:
A method of forming a sputtering target and other metal articles having controlled oxygen and nitrogen content levels and the articles so formed are described. The method includes surface-nitriding a deoxidized metal powder and further includes consolidating the powder by a powder metallurgy technique. Preferred metal powders include, but are not limited to, valve metals, including tantalum, niobium, and alloys thereof.
Abstract:
A soft magnetic material, a dust core, a method for manufacturing the soft magnetic material, and a method for manufacturing the dust core that can improve DC bias characteristics are provided.A soft magnetic material includes a plurality of metal magnetic particles 10 whose coefficient of variation Cv (σ/μ), which is a ratio of a standard deviation (σ) of a particle size of the metal magnetic particles 10 to an average particle size (μ) thereof, is 0.40 or less and whose circularity Sf is 0.80 or more and 1 or less. The metal magnetic particles 10 preferably have an average particle size of 1 μm or more and 70 μm or less. The soft magnetic material preferably further includes an insulating coated film that surrounds a surface of each of the metal magnetic particles 10.
Abstract:
The invention relates to a powder metallurgically manufactured steel with a chemical composition containing, in % by weight: 0.01-2 C, 0.6-10 N, 0.01-3.0 Si, 0.01-10.0 Mn, 16-30 Cr, 0.01-5 Ni, 0.01-5.0 (Mo+W/2), 0.01-9 Co, max. 0.5 S and 0.5-14 (V+Nb/2), where the contents of N on the one hand and of (V+Nb/2) on the other hand are balanced in relation to each other such that the contents of these elements are within an area that is defined by the coordinates A′, 13% G, H, A′, where the coordinates of [N, (V+Nb/2)] are: A′: [0.6,0.5]; B′: [1.6,0.5]; G: [9.8,14.0]; H: [2.6,14.0], and max. 7 of (Ti+Zr+Al), balance essentially only iron and impurities at normal amounts. The steel may be used for tools for injection moulding, compression moulding and extrusion of components of plastics, and cold working.
Abstract translation:本发明涉及一种粉末冶金制造的钢,其化学成分含有重量百分比:0.01-2C,0.6-10N,0.01-3.0Si,0.01-10.0Mn,16-30Cr,0.01-5Ni, 0.01-5.0(Mo + W / 2),0.01-9Co, 0.5 S和0.5-14(V + Nb / 2),其中一方面的N和(V + Nb / 2)的含量彼此平衡,使得这些元素的含量 在坐标A',13%G,H,A'定义的区域内,[N,(V + Nb / 2)]的坐标为:A':[0.6,0.5]; B':[1.6,0.5]; G:[9.8,14.0]; H:[2.6,14.0],最大 7(Ti + Zr + Al),基本上只有铁和正常量的杂质。 钢可用于注塑,压塑和塑料部件的挤出和冷加工的工具。
Abstract:
The present invention provides metal powder compositions for pressed powder metallurgy and methods of forming metal parts using the metal powder compositions. In each embodiment of the invention, the outer surface of primary metal particles in the metal powder composition is chemically cleaned to remove oxides in situ, which provides ideal conditions for achieving near full density metal parts when the metal powder compositions are sintered.
Abstract:
The invention relates to a powder metallurgically manufactured steel with a chemical composition containing, in % by weight: 0.01-2 C, 0.6-10 N, 0.01-3.0 Si, 0.01-10.0 Mn, 16-30 Cr, 0.01-5 Ni, 0.01-5.0 (Mo+W/2), 0.01-9 Co, max. 0.5 S and 0.5-14 (V+Nb/2), where the contents of N on the one hand and of (V+Nb/2) on the other hand are balanced in relation to each other such that the contents of these elements are within an area that is defined by the coordinates A′, B′, G, H, A′, where the coordinates of [N, (V+Nb/2)] are: A: [0.6,0.5]; B′: [1.6,0.5]; G: [9.8,14.0]; H: [2.6,14.0], and max. 7 of (Ti+Zr+Al), balance essentially only iron and impurities at normal amounts. The steel is intended to be used in the manufacturing of tools for injection moulding, compression moulding and extrusion of components of plastics, and for tools for cold working, which are exposed to corrosion. The invention also relates to construction components such as injection nozzles for engines, wear parts, pump parts, bearing components etc. Yet another field of application is the use of the steel alloy for the manufacturing of knives for food industry.
Abstract translation:本发明涉及一种粉末冶金制造的钢,其化学成分含有重量百分比:0.01-2C,0.6-10N,0.01-3.0Si,0.01-10.0Mn,16-30Cr,0.01-5Ni, 0.01-5.0(Mo + W / 2),0.01-9Co, 0.5 S和0.5-14(V + Nb / 2),其中一方面的N和(V + Nb / 2)的含量彼此平衡,使得这些元素的含量 在由[N,(V + Nb / 2)]的坐标为A:[0.6,0.5]的坐标A',B',G,H,A'定义的区域内。 B':[1.6,0.5]; G:[9.8,14.0]; H:[2.6,14.0],最大 7(Ti + Zr + Al),基本上只有铁和正常量的杂质。 该钢用于制造用于注射成型,压缩成型和塑料部件挤压的工具以及暴露于腐蚀的冷加工工具。 本发明还涉及诸如发动机用注射喷嘴,耐磨部件,泵部件,轴承部件等的构造部件。另外一个应用领域是使用钢合金制造用于食品工业的刀具。