Abstract:
A method for forming a barrier layer upon a copper containing conductor layer employs a hydrogen containing plasma treatment of the copper containing conductor layer followed by an argon plasma treatment of the copper containing conductor layer. The barrier layer may be formed employing a chemical vapor deposition method, such as an atomic layer deposition method. When the deposition method employs a metal and carbon containing source material, the two-step plasma pretreatment provides the barrier layer with enhanced electrical properties.
Abstract:
A method of forming a via in a low-k dielectric material and without the attendant via poisoning problem, or a dual damascene structure formed in the same dielectric and without the same problem are disclosed. The vertical walls of the via opening are first lined with a low-k protection layer and then covered with a barrier layer in order to prevent outgassing from the low-k dielectric material when copper is deposited into the via opening. In the case of a dual damascene structure, it is sufficient that the hole opening underlying the trench opening is first lined with the low-k protection layer. The resulting via or dual damascene structure is free of poisoned metal and, therefore, more reliable.
Abstract:
It is a general object of the present invention to provide an improved method of fabrication in the formation of an improved copper metal diffusion barrier layer having the structure, W/WSiN/WN, in single and dual damascene interconnect trench/contact via processing with 0.10 micron nodes for MOSFET and CMOS applications. The diffusion barrier is formed by depositing a tungsten nitride bottom layer, followed by an in situ SiH4/NH3 or SiH4/H2 soak forming a WSiN layer, and depositing a final top layer of tungsten. This invention is used to manufacture reliable metal interconnects and contact vias in the fabrication of MOSFET and CMOS devices for both logic and memory applications and the copper diffusion barrier formed, W/WSiN/WN, passes a stringent barrier thermal reliability test at 400° C. Pure single barrier layers, i.e., single layer WN, exhibit copper punch through or copper spiking during the stringent barrier thermal reliability test at 400° C.
Abstract:
A new method is provided for the creation of a copper seed interface capability. A first seed layer of copper alloy and a second seed layer of copper is provided over an opening in a layer of dielectric. The opening is filled with copper, the first and second seed layers are annealed.
Abstract:
A damascene structure for semiconductor devices is provided. In an embodiment, the damascene structure includes trenches formed over vias that electrically couple the trenches to an underlying conductive layer such that the trenches have varying widths. The vias are lined with a first barrier layer. The first barrier layers along the bottom of vias are removed such that a recess formed in the underlying conductive layer. The recesses formed along the bottom of vias are such that the recess below narrower trenches is greater than the recess formed below wider trenches. In another embodiment, a second barrier layer may then be formed over the first barrier layer. In this embodiment, a portion of the conductive layer may be interposed between the first barrier layer and the second barrier layer.
Abstract:
A method for eliminating noise interference and acoustic noise by a printed circuit board ground plane layout is disclosed. The method is applied to a circuit system having multiple outputs, wherein the circuit system has a first power converting module, a second power converting module and a printed circuit board. The first power converting module and the second power converting module respectively includes a first ground pin group and a second ground pin group. The method includes the steps of (a) connecting each ground pin of the first ground pin group to a respective solder point and connecting each solder point to a first node, and connecting each ground pin of the second ground pin group to a respective solder point and connecting each solder point to a second node, and (b) connecting the first node and the second node to a common node and connecting the common node to a solder point of a common ground terminal on the printed circuit board ground plane.
Abstract:
A new method is provided for the creation of a barrier-free copper interconnect. A dual damascene structure is created in a layer of dielectric, a thin metal barrier layer is deposited. The metal barrier layer is oxidized, two layers are then deposited with the first layer comprising doped copper and the second layer comprising pure copper. The dual damascene structure is filled with copper, a thermal anneal is applied, stabilizing the deposited copper filling the dual damascene structure and forming metal oxide of the doped minority element. Excess copper is then removed from the dielectric.
Abstract:
A new method is provided for the creation of a barrier-free copper interconnect. A dual damascene structure is created in a layer of dielectric, a thin metal barrier layer is deposited. The metal barrier layer is oxidized, two layers are then deposited with the first layer comprising doped copper and the second layer comprising pure copper. The dual damascene structure is filled with copper, a thermal anneal is applied, stabilizing the deposited copper filling the dual damascene structure and forming metal oxide of the doped minority element. Excess copper is then removed from the dielectric.
Abstract:
A method for forming an improved TaN copper barrier for a copper damascene process is described which has improved adhesion to low-k dielectric layers and also improves the wetting of a copper seed layer deposited over it thereby improving the structure of the copper seed layer which is critical to achieving uniform, high quality electrochemical copper deposition. The copper barrier is a composite structure having an lower thin Ta rich TaN portion which mixes into and reacts with the surface of the low-k dielectric layer, forming a strongly bonded transition layer between the low-k material and the remaining portion of the barrier layer. The presence of the transition layer causes compressive film stress rather than tensile stress as found in the conventional TaN barrier. As a result, the barrier layer does not delaminate from the low-k layer during subsequent processing. A second thick central portion of the barrier layer is formed of stoichiometric TaN which benefits subsequent CMP of the copper damascene structure. An upper thin Ta portion improves barrier wetting to the copper seed layer. The three sections of the laminar barrier are sequentially deposited in a single pumpdown operation by IMP sputtering from a Ta target.
Abstract:
A package includes a die having a conductive pad at a top surface of the die, a stud bump over and connected to the conductive pad, and a redistribution line over and connected to the stud bump. An electrical connector is over and electrically coupled to the redistribution line.