Abstract:
A method for selectively altering a predetermined portion of an object or an external member in contact with the predetermined portion of the object is disclosed. The method includes selectively electrically addressing the predetermined portion, thereby locally resistive heating the predetermined portion, and exposing the object, including the predetermined portion, to the external member.
Abstract:
A photonic device includes a substrate and at least one molecularly assembled or atomic layer deposited nano-structure defined on the substrate. The nano-structure has a controlled resolution less than or equal to 100 nm.
Abstract:
A method and apparatus for cleaning a workpiece are disclosed. A gas and cleaning solution are supplied to an atomizing nozzle which atomizes the cleaning solution and sprays the top surface of a workpiece with an atomized spray. A liquid having a controlled gas content is flowed to the top surface of the workpiece from a rinse nozzle. Megasonic energy is applied from the backside of the workpiece.
Abstract:
Fabrication of a photonic crystal is described. A patterned array of nanowires is formed, the nanowires extending outward from a surface, the nanowires comprising a catalytically grown nanowire material. Spaces between the nanowires are filled with a slab material, the patterned array of nanowires defining a patterned array of channels in the slab material. The nanowire material is then removed from the channels.
Abstract:
Certain embodiments of the present invention are directed to a method of fabricating a mixed-scale electronic interface. A substrate is provided with a first set of conductive elements. A first layer of nanowires may be formed over the first set of conductive elements. A number of channels may be formed, with each of the channels extending diagonally through a number of the nanowires of the first layer. A number of pads may be formed, each of which is electrically interconnected with an underlying conductive element of the first set of conductive elements and one or more adjacent nanowires of the first layer of nanowires. The pads and corresponding electrically interconnected nanowires define a number of pad-interconnected-nanowire-units. Additional embodiments are directed to a method of forming a nanoimprinting mold and a method of selectively programming nanowire-to-conductive element electrical connections.
Abstract:
A semiconductor substrate processing apparatus and a method for processing semiconductor substrates are provided. The semiconductor substrate processing apparatus may include a liquid container where a semiconductor substrate may be immersed in a semiconductor processing liquid. The semiconductor substrate may then be removed from the semiconductor processing liquid while vapor is directed at a surface of the semiconductor substrate where the semiconductor substrate contacts a surface of the processing liquid.
Abstract:
Raman-enhancing structures include a photonic crystal having a resonant cavity and at least one waveguide coupled to the resonant cavity. A nanostructure comprising a Raman-enhancing material is disposed proximate the resonant cavity of the photonic crystal. Raman-enhancing structures include a microdisk resonator, at least one waveguide coupled to the microdisk resonator, and a nanostructure comprising a Raman-enhancing material disposed proximate the microdisk resonator. Methods for performing Raman spectroscopy include generating radiation, guiding the radiation through a waveguide to a resonant cavity in a photonic crystal or a microdisk resonator, resonating the radiation in the resonant cavity or microdisk resonator, providing an analyte proximate the resonant cavity or microdisk resonator, subjecting the analyte to the resonating radiation, and detecting Raman scattered radiation.
Abstract:
An apparatus for sensing at least one property of a fluid is described. A first photonic crystal structure and a second photonic crystal structure are defined in a dielectric slab. The first and second photonic crystal structures comprise differently patterned arrays of channels extending through the dielectric slab. The apparatus further comprises a fluid introduction device configured to introduce a common volume of the fluid into the channels of the first and second photonic crystal structures. The at least one property of the fluid can be sensed by measuring the propagation of radiation through the first and second photonic crystal structures.
Abstract:
A lift-off material for use in fabricating a nanostructure. The lift-off material includes a first material adapted to, and present in an amount sufficient to provide a predetermined amount of mechanical strength to the nanostructure during fabrication; and a second material adapted to, and present in an amount sufficient to provide a predetermined solubility to the lift-off material.
Abstract:
An optical sensor is provided, comprising (a) a silicon nanowire of finite length having an electrical contact pad at each end thereof; and (b) a plurality of self-assembled molecules on a surface of the silicon nanowire, the molecules serving to modulate electrical conductivity of the silicon nanowire by either a reversible change in dipole moment of the molecules or by a reversible molecule-assisted electron/energy transfer from the molecules onto the silicon nanowire. Further, a method of making the optical sensor is provided. The concept of molecular self-assembly is applied in attaching functional molecules onto silicon nanowire surfaces, and the requirement of molecule modification (hydroxy group in molecules) is minimal from the point view of synthetic difficulty and compatibility. Self-assembly will produce well-ordered ultra-thin films with strong chemical bonding on a surface that cannot be easily achieved by other conventional methods.