Selectively altering a predetermined portion or an external member in contact with the predetermined portion
    171.
    发明授权
    Selectively altering a predetermined portion or an external member in contact with the predetermined portion 失效
    选择性地改变与预定部分接触的预定部分或外部构件

    公开(公告)号:US07709298B2

    公开(公告)日:2010-05-04

    申请号:US11779423

    申请日:2007-07-18

    Applicant: Zhiyong Li

    Inventor: Zhiyong Li

    CPC classification number: H01L29/125 B82Y10/00

    Abstract: A method for selectively altering a predetermined portion of an object or an external member in contact with the predetermined portion of the object is disclosed. The method includes selectively electrically addressing the predetermined portion, thereby locally resistive heating the predetermined portion, and exposing the object, including the predetermined portion, to the external member.

    Abstract translation: 公开了一种用于选择性地改变与物体的预定部分接触的物体或外部构件的预定部分的方法。 该方法包括选择性地电寻址预定部分,由此局部地阻止加热预定部分,并将包括预定部分的物体暴露于外部构件。

    Mixed-scale electronic interfaces
    175.
    发明申请
    Mixed-scale electronic interfaces 失效
    混合电子接口

    公开(公告)号:US20080099929A1

    公开(公告)日:2008-05-01

    申请号:US11590492

    申请日:2006-10-30

    Abstract: Certain embodiments of the present invention are directed to a method of fabricating a mixed-scale electronic interface. A substrate is provided with a first set of conductive elements. A first layer of nanowires may be formed over the first set of conductive elements. A number of channels may be formed, with each of the channels extending diagonally through a number of the nanowires of the first layer. A number of pads may be formed, each of which is electrically interconnected with an underlying conductive element of the first set of conductive elements and one or more adjacent nanowires of the first layer of nanowires. The pads and corresponding electrically interconnected nanowires define a number of pad-interconnected-nanowire-units. Additional embodiments are directed to a method of forming a nanoimprinting mold and a method of selectively programming nanowire-to-conductive element electrical connections.

    Abstract translation: 本发明的某些实施例涉及一种制造混合比例电子接口的方法。 衬底设置有第一组导电元件。 可以在第一组导电元件上形成第一层纳米线。 可以形成多个通道,其中每个通道对角地延伸穿过第一层的多个纳米线。 可以形成多个焊盘,每个焊盘与第一组导电元件的下面的导电元件和第一纳米线层的一个或多个相邻的纳米线电互连。 焊盘和相应的电互连纳米线限定了多个衬垫互连的纳米线单元。 另外的实施例涉及形成纳米压印模具的方法和选择性地编程纳米线至导电元件电连接的方法。

    Semiconductor substrate cleaning apparatus
    176.
    发明申请
    Semiconductor substrate cleaning apparatus 审中-公开
    半导体基板清洗装置

    公开(公告)号:US20080053486A1

    公开(公告)日:2008-03-06

    申请号:US11891339

    申请日:2007-08-09

    CPC classification number: B08B3/04 B08B3/02 H01L21/67028

    Abstract: A semiconductor substrate processing apparatus and a method for processing semiconductor substrates are provided. The semiconductor substrate processing apparatus may include a liquid container where a semiconductor substrate may be immersed in a semiconductor processing liquid. The semiconductor substrate may then be removed from the semiconductor processing liquid while vapor is directed at a surface of the semiconductor substrate where the semiconductor substrate contacts a surface of the processing liquid.

    Abstract translation: 提供半导体衬底处理设备和半导体衬底的处理方法。 半导体基板处理装置可以包括其中半导体基板可以浸入半导体处理液体中的液体容器。 然后可以从半导体处理液体中去除半导体衬底,同时蒸汽指向半导体衬底的半导体衬底接触处理液表面的表面。

    Photonic crystal Raman sensors and methods including the same
    177.
    发明申请
    Photonic crystal Raman sensors and methods including the same 有权
    光子晶体拉曼传感器和方法包括相同

    公开(公告)号:US20070252981A1

    公开(公告)日:2007-11-01

    申请号:US11413877

    申请日:2006-04-27

    CPC classification number: G01J3/44 G01N21/658

    Abstract: Raman-enhancing structures include a photonic crystal having a resonant cavity and at least one waveguide coupled to the resonant cavity. A nanostructure comprising a Raman-enhancing material is disposed proximate the resonant cavity of the photonic crystal. Raman-enhancing structures include a microdisk resonator, at least one waveguide coupled to the microdisk resonator, and a nanostructure comprising a Raman-enhancing material disposed proximate the microdisk resonator. Methods for performing Raman spectroscopy include generating radiation, guiding the radiation through a waveguide to a resonant cavity in a photonic crystal or a microdisk resonator, resonating the radiation in the resonant cavity or microdisk resonator, providing an analyte proximate the resonant cavity or microdisk resonator, subjecting the analyte to the resonating radiation, and detecting Raman scattered radiation.

    Abstract translation: 拉曼增强结构包括具有谐振腔和耦合到谐振腔的至少一个波导的光子晶体。 包含拉曼增强材料的纳米结构设置在光子晶体的谐振腔附近。 拉曼增强结构包括微盘谐振器,耦合到微盘谐振器的至少一个波导和包括靠近微盘谐振器设置的拉曼增强材料的纳米结构。 用于执行拉曼光谱的方法包括产生辐射,将辐射通过波导引导到光子晶体或微盘谐振器中的谐振腔,谐振谐振腔或微盘谐振器中的辐射,提供靠近谐振腔或微盘谐振器的分析物, 对分析物进行共振辐射,并检测拉曼散射辐射。

    Photonic crystal device for fluid sensing
    178.
    发明申请
    Photonic crystal device for fluid sensing 有权
    用于流体感测的光子晶体装置

    公开(公告)号:US20060233481A1

    公开(公告)日:2006-10-19

    申请号:US11107098

    申请日:2005-04-15

    Applicant: Zhiyong Li

    Inventor: Zhiyong Li

    CPC classification number: G02B6/1225 B82Y20/00 G02B2006/1215

    Abstract: An apparatus for sensing at least one property of a fluid is described. A first photonic crystal structure and a second photonic crystal structure are defined in a dielectric slab. The first and second photonic crystal structures comprise differently patterned arrays of channels extending through the dielectric slab. The apparatus further comprises a fluid introduction device configured to introduce a common volume of the fluid into the channels of the first and second photonic crystal structures. The at least one property of the fluid can be sensed by measuring the propagation of radiation through the first and second photonic crystal structures.

    Abstract translation: 描述了用于感测流体的至少一个性质的装置。 在介质板中限定第一光子晶体结构和第二光子晶体结构。 第一和第二光子晶体结构包括延伸穿过电介质板的不同图案的通道阵列。 该装置还包括流体引入装置,其构造成将共同体积的流体引入第一和第二光子晶体结构的通道中。 可以通过测量通过第一和第二光子晶体结构的辐射的传播来感测流体的至少一个性质。

    Lift-off material
    179.
    发明申请
    Lift-off material 审中-公开
    剥离材料

    公开(公告)号:US20060108322A1

    公开(公告)日:2006-05-25

    申请号:US10993451

    申请日:2004-11-19

    Applicant: Wei Wu Zhiyong Li

    Inventor: Wei Wu Zhiyong Li

    Abstract: A lift-off material for use in fabricating a nanostructure. The lift-off material includes a first material adapted to, and present in an amount sufficient to provide a predetermined amount of mechanical strength to the nanostructure during fabrication; and a second material adapted to, and present in an amount sufficient to provide a predetermined solubility to the lift-off material.

    Abstract translation: 用于制造纳米结构的剥离材料。 剥离材料包括第一材料,其适于并且以足以在制造期间向纳米结构提供预定量的机械强度的量存在; 以及第二材料,其适于并且以足以向剥离材料提供预定溶解度的量存在。

    Nano optical sensors via molecular self-assembly
    180.
    发明申请
    Nano optical sensors via molecular self-assembly 失效
    纳米光学传感器通过分子自组装

    公开(公告)号:US20050040417A1

    公开(公告)日:2005-02-24

    申请号:US10917751

    申请日:2004-08-12

    Abstract: An optical sensor is provided, comprising (a) a silicon nanowire of finite length having an electrical contact pad at each end thereof; and (b) a plurality of self-assembled molecules on a surface of the silicon nanowire, the molecules serving to modulate electrical conductivity of the silicon nanowire by either a reversible change in dipole moment of the molecules or by a reversible molecule-assisted electron/energy transfer from the molecules onto the silicon nanowire. Further, a method of making the optical sensor is provided. The concept of molecular self-assembly is applied in attaching functional molecules onto silicon nanowire surfaces, and the requirement of molecule modification (hydroxy group in molecules) is minimal from the point view of synthetic difficulty and compatibility. Self-assembly will produce well-ordered ultra-thin films with strong chemical bonding on a surface that cannot be easily achieved by other conventional methods.

    Abstract translation: 提供了一种光学传感器,其包括(a)有限长度的硅纳米线,其每端具有电接触焊盘; 和(b)在硅纳米线的表面上的多个自组装分子,所述分子用于通过分子的偶极矩的可逆变化或通过可逆分子辅助电子/分子调制硅纳米线的导电性, 能量从分子转移到硅纳米线上。 此外,提供了制造光学传感器的方法。 分子自组装的概念应用于将功能分子附着在硅纳米线表面上,从合成难度和相容性的观点来看,分子修饰(分子中的羟基)的要求是最小的。 自组装将产生在表面上具有强化学键合的良好有序的超薄膜,其不能通过其它常规方法实现。

Patent Agency Ranking