Abstract:
Apparatus for optical communications (10, 110, 210) includes a low-temperature grown photoconductor (12, 140, 220) coupled to at least one resonant tunneling device (14, 120, 130, 230, 240). When exposed to an input light, low-temperature grown photoconductor (10, 110, 210) absorbs photons, which decreases the resistivity, and thus the resistance of the photoconductor. This decrease in resistance causes a decrease in the voltage drop across photoconductor (12, 140, 220), which causes a corresponding increase in the voltage drop across resonant tunneling device (14, 120, 130, 230, 140).
Abstract:
A multiple film integrated infrared (IR) detector assembly 85 consists of detector films 86, 88, 90 having different IR spectral sensitivities which are deposited on a breadboard IR transmissive but electrically insulating substrate 42. Substrate 42 is deposited on an IR filter layer comprising an HgCdTe film 70. By various techniques described, filter film 70 has a varying composition from edge 68 to 72. This compositional gradient of film 70 results in varying IR spectral absorption as shown by IR transmission graphs 10, 12, 14. Film 70 acts as a graded IR filter in concert with the response of the detector films 86, 88, 90. By the proper choice of the compositional gradients in these films, and as a result the IR spectral response, an integrated IR spectrometer may be fabricated whereby each detector 86, 87, 90 detects only specific narrow bands of IR wavelengths.
Abstract:
A solid-state color imager comprised of a solid-state base comprised of a plurality of electrical switching elements said base further including photosensitive elements associated with some of the switching elements arranged in sets having superimposed thereon a plurality of photosensor layers which can detect and absorb different colors of light. Each photosensitive layer is comprised of an upper transparent continuous electrode sublayer, a photoconductive sublayer, and a back mosaic transparent electrode sublayer which is electrically connected to said base. When light strikes the outermost photosensitive layer, light of a particular color is absorbed, and in connection with said base, its presence is electrically detected and recorded. The unabsorbed light continues to travel and strike the next succeeding photosensor layer whereat another color of light is absorbed and detected. The unabsorbed light passing through the second photosensor layer strikes the photosensitive elements of the base which detect the remaining light. The photosensor layers are electrically insulated from each other and the base and in connection with the photosensitive elements of the base make possible detection of three separate colors of light such as blue, green and red without the use of multi-color filter arrays, although in some embodiments a monocolor filter is used.
Abstract:
An electronic device includes a semiconductor substrate having a first conductive routing structure on a first side of the semiconductor substrate, and a low aspect ratio via opening extending from the first side to an opposite second side. The electronic device includes a transparent cover over a portion of the first side and covering the patterned first conductive routing structure, as well as an insulator layer including a photo-imageable material on the second side and along a sidewall of the via opening, and a second conductive routing structure on an outer side of the insulator layer and extending through the via opening and directly contacting a portion of the first conductive routing structure.
Abstract:
A distributed photodiode with FIR filtering function enabled by a lumped transmission line is provided. The distributed photodiode includes inductors, a plurality of photodiode segments, photodiode biasing components, and termination impedance. The electrical bandwidth due to the junction parasitic capacitance of the photodiode is increased as the parasitic capacitance is absorbed in the transmission line structure. Moreover, the delay elements inherent in the transmission line enable implementation of an analog finite impulse response (FIR) filter that has equalization capability to allow a customized photodiode frequency response compensation.
Abstract:
To provide a photodetector circuit capable of obtaining signals in different periods without being affected by characteristics of a photoelectric conversion element. The photodetector circuit has n signal output circuits (n is a natural number of 2 or more) connected to the photoelectric conversion element. Further, the n signal output circuits each include the following: a transistor whose gate potential varies in accordance with the amount of light entering the photoelectric conversion element; a first switching element which holds the gate potential of the transistor; and a second switching element which controls a signal output from the transistor. Thus, after data based on the amount of light entering the photoelectric conversion elements is held as the gate potentials of the transistors, the second switching elements are turned on, whereby signals in different periods can be obtained without being affected by characteristics of the photoelectric conversion element.
Abstract:
The detector of visible and near-infrared radiation comprises a near-infrared photosensitive element, a readout circuit for reading the near-infrared photosensitive element, four visible photosensitive elements, one of which being placed facing the near-infrared photosensitive element, and four pigmented resin filters to define a pixel quadruplet. A first pixel, including the near-infrared photosensitive element and one of the visible photosensitive elements, is provided with a resin filter opaque to visible radiation. The three other pixels, respectively including the three other visible photosensitive elements, are respectively provided with filters associated with the three primary colors.
Abstract:
A photosensor substrate (10) includes a plurality of sensor units (1). The sensor units (1) each include a switching element (2), a lower electrode (3) connected to the switching element (2), and a photoelectric conversion element (4). The photosensor substrate (10) includes lines (G and D) connected to the switching elements of the plurality of sensor units and led out of a sensor area (SA), and terminal parts (TG and TD) connected to the lines (G and D) led out of the sensor area (SA). The terminal parts (TG and TD) each include a protective layer (4a) overlapped with the line (G or D) led out of the sensor area and containing a material for the photoelectric conversion element (4), and a terminal conductor (6) connected to the line (G or D) via an opening (CH1) provided in the protective layer (4a).