Abstract:
An object of the present invention is to provide a semiconductor device having a conductive film, which sufficiently serves as an antenna, and a method for manufacturing thereof. The semiconductor device has an element formation layer including a transistor, which is provided over a substrate, an insulating film provided on the element formation layer, and a conductive film serving as an antenna, which is provided on the insulating film. The insulating film has a groove. The conductive film is provided along the surface of the insulating film and the groove. The groove of the insulating film may be provided to pass through the insulating film. Alternatively, a concave portion may be provided in the insulating film so as not to pass through the insulating film. A structure of the groove is not particularly limited, and for example, the groove can be provided to have a tapered shape, etc.
Abstract:
A separation layer and a semiconductor element layer including a thin film transistor are formed. A conductive resin electrically connected to the semiconductor element layer is formed. A first sealing layer including a fiber and an organic resin layer is formed over the semiconductor element layer and the conductive resin. A groove is formed in the first sealing layer, the semiconductor element layer, and the separation layer. A liquid is dropped into the groove to separate the separation layer and the semiconductor element layer. The first sealing layer over the conductive resin is removed to form an opening. A set of the first sealing layer and the semiconductor element layer is divided into a chip. The chip is bonded to an antenna formed over a base material. A second sealing layer including a fiber and an organic resin layer is formed so as to cover the antenna and the chip.
Abstract:
A release layer formed over a substrate; at least one of thin film integrated circuits is formed over the release layer; a film is formed over each of the at least one of thin film integrated circuits; and the release layer is removed by using an etchant; thus, the at least one of thin film integrated circuits is peeled from the substrate. A semiconductor device is formed by sealing the peeled thin film integrated circuit by lamination or the like.
Abstract:
To provide a photodetector circuit capable of obtaining signals in different periods without being affected by characteristics of a photoelectric conversion element. The photodetector circuit has n signal output circuits (n is a natural number of 2 or more) connected to the photoelectric conversion element. Further, the n signal output circuits each include the following: a transistor whose gate potential varies in accordance with the amount of light entering the photoelectric conversion element; a first switching element which holds the gate potential of the transistor; and a second switching element which controls a signal output from the transistor. Thus, after data based on the amount of light entering the photoelectric conversion elements is held as the gate potentials of the transistors, the second switching elements are turned on, whereby signals in different periods can be obtained without being affected by characteristics of the photoelectric conversion element.
Abstract:
It is an object of the present invention to provide a semiconductor device where, even in a case of stacking a plurality of semiconductor elements provided over a substrate, the stacked semiconductor elements can be electrically connected through the substrate, and a manufacturing method thereof. According to one feature of the present invention, a method for manufacturing a semiconductor device includes the steps of selectively forming a depression in an upper surface of a substrate or forming an opening which penetrates the upper surface through a back surface; forming an element group having a transistor so as to cover the upper surface of the substrate and the depression, or the opening; and exposing the element group formed in the depression or the opening by thinning the substrate from the back surface. A means for thinning the substrate can be performed by partially removing the substrate by performing grinding treatment, polishing treatment, etching by chemical treatment, or the like from the back surface of the substrate.
Abstract:
To provide a photodetector circuit capable of obtaining signals in different periods without being affected by characteristics of a photoelectric conversion element. The photodetector circuit has n signal output circuits (n is a natural number of 2 or more) connected to the photoelectric conversion element. Further, the n signal output circuits each include the following: a transistor whose gate potential varies in accordance with the amount of light entering the photoelectric conversion element; a first switching element which holds the gate potential of the transistor; and a second switching element which controls a signal output from the transistor. Thus, after data based on the amount of light entering the photoelectric conversion elements is held as the gate potentials of the transistors, the second switching elements are turned on, whereby signals in different periods can be obtained without being affected by characteristics of the photoelectric conversion element.
Abstract:
To provide a semiconductor device capable of being easily subjected to a physical test without deteriorating characteristics. According to a measuring method of a semiconductor device in which an element layer provided with a test element including a terminal portion is sealed with first and second films having flexibility, the first film formed over the terminal portion is removed to form a contact hole reaching the terminal portion; the contact hole is filled with a resin containing a conductive material; heating is carried out after arranging a wiring substrate having flexibility over the resin with which filling has been performed so that the terminal portion and the wiring substrate having flexibility are electrically connected via the resin containing a conductive material; and a measurement is performed.
Abstract:
It is an object of the present invention to provide a semiconductor device where, even in a case of stacking a plurality of semiconductor elements provided over a substrate, the stacked semiconductor elements can be electrically connected through the substrate, and a manufacturing method thereof. According to one feature of the present invention, a method for manufacturing a semiconductor device includes the steps of selectively forming a depression in an upper surface of a substrate or forming an opening which penetrates the upper surface through a back surface; forming an element group having a transistor so as to cover the upper surface of the substrate and the depression, or the opening; and exposing the element group formed in the depression or the opening by thinning the substrate from the back surface. A means for thinning the substrate can be performed by partially removing the substrate by performing grinding treatment, polishing treatment, etching by chemical treatment, or the like from the back surface of the substrate.
Abstract:
A transistor with favorable electrical characteristics is provided. A transistor with stable electrical characteristics is provided. A semiconductor device having a high degree of integration is provided. Side surfaces of an oxide semiconductor layer in which a channel is formed are covered with an oxide semiconductor layer, whereby impurity diffusion from the side surfaces of the oxide semiconductor into the inside can be prevented. A gate electrode is formed by a damascene process, whereby transistors can be miniaturized and formed at a high density.
Abstract:
To provide a photodetector circuit capable of obtaining signals in different periods without being affected by characteristics of a photoelectric conversion element. The photodetector circuit has n signal output circuits (n is a natural number of 2 or more) connected to the photoelectric conversion element. Further, the n signal output circuits each include the following: a transistor whose gate potential varies in accordance with the amount of light entering the photoelectric conversion element; a first switching element which holds the gate potential of the transistor; and a second switching element which controls a signal output from the transistor. Thus, after data based on the amount of light entering the photoelectric conversion elements is held as the gate potentials of the transistors, the second switching elements are turned on, whereby signals in different periods can be obtained without being affected by characteristics of the photoelectric conversion element.