Abstract:
A dielectric adhesive film for an electronic paper display device. A lower electrode to which voltage is applied and an image upper electrode coated with charged particles whose colors are changed depending on the applied voltage are attached to the adhesive film. Thickness of the adhesive film is controlled to be uniform and constant, and a resistance value in the thickness direction of the adhesive film, i.e., a resistance value in the direction where an electric field is formed, is controlled without changing adhesive properties and reliability as the thickness of the adhesive film is controlled. Since loss of the applied voltage is minimized and the charged particles are freely driven, driving performance of the display device is excellent although a high voltage is not applied in driving a flexible display device, such as a flexible LED, an organic electro luminescence (EL) element including an electronic paper, and the like.
Abstract:
A digital buck-boost conversion circuit includes an analog-to-digital converter configured to convert an output voltage signal into a digital signal, a pulse period control block configured to output a pulse period control signal based on degrees of scattering at different frequencies of the digital signal, a pulse generation block configured to output a pulse based on the pulse period control signal, and a buck-boost converter configured to convert the pulse into the output voltage signal.
Abstract:
A thin film transistor array panel includes: a substrate; a gate line disposed on the substrate and including a gate electrode; a gate insulating layer disposed on the gate line; an semiconductive oxide layer disposed on the gate insulating layer; a data line disposed on the semiconductive oxide layer and including a source electrode; a drain electrode facing the source electrode on the semiconductive oxide layer; and a passivation layer disposed on the data line. The semiconductive oxide layer is patterned with chlorine (Cl) containing gas which alters relative atomic concentrations of primary semiconductive characteristic-providing elements of the semiconductive oxide layer at least at a portion where a transistor channel region is defined.
Abstract:
Disclosed is a wheel drive vehicle including a main body having a rotatable arm and an arm driving unit for driving the arm, a wheel rotatably mounted to the arm, respectively, and a sensing unit for sensing a non-contact state of the wheel from a ground, wherein the sensing unit includes a spring, first and second sensors, and a controller.
Abstract:
A multiple ratio transmission having an input shaft, an output shaft and oncoming clutch and off-going clutch for effecting ratio upshifts is provided. The transmission also includes a transmission controller configured for controlling shifts. During the torque phase of a ratio upshift, the controller increases input torque. Next, the controller estimates an oncoming clutch target torque. The controller controls a torque input to ensure the off-going clutch remains locked. The controller measures an actual transmission value for a torque transmitting element of the transmission and corrects the oncoming clutch target torque using the actual transmission value whereby an increasing torque for the oncoming friction element is achieved with minimal torque transients along the output shaft during the upshift.
Abstract:
A mounting apparatus of a side airbag for a vehicle is advantageous in that in the event of a side crash, a deployment direction of an airbag cushion is guided to a slit of a seat pad by an inner frame and an outer bracket, so that the airbag cushion is distended and deployed towards a front of a seat back, thus allowing an occupant sitting in a seat to be more safely protected via the deployed airbag cushion.
Abstract:
A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one embodiment, the method adjusts a transmission tie-up force in response to engine starting. The method may improve vehicle launch for stop/start vehicles.
Abstract:
An integrating sphere photometer and a measuring method of the same are provided to precisely measure a directional light source. The integrating sphere photometer includes an integrating sphere having a plurality of through-holes, a plurality of photometers disposed at the through-holes, baffles disposed in front of the photometers to be spaced apart therefrom, an auxiliary light source disposed inside the integrating sphere, an auxiliary baffle disposed in front of the auxiliary light source, and a summing unit of output signals of the photometers under the illumination of a light source to be measured disposed in the central area inside the integrating sphere.
Abstract:
The present invention relates to a cryo transfer holder for TEM including: a specimen support having a specimen rod with a specimen cradle provided on one side end thereof, while being airtightly inserted reciprocatingly on the other side end thereof into a cooling tube of a thermal insulating container, and a thermal insulating pipe configured to be fixed to the thermal insulating container on one side thereof and to surround the specimen rod except the specimen cradle at the time of observation. The thermal insulating container in which a cooling medium is contained has the cooling pipe penetrated thereinto. A specimen rod-reciprocating means is configured to be coupled to the side of the thermal insulating container to allow the specimen rod to be reciprocated relative to the thermal insulating container.
Abstract:
Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.