Abstract:
A header block is configured to be attachable to an implantable medical device. The header block includes a header block body and a connection port disposed in the header block body configured to receive an implantable lead. A conductor is disposed in the header block body electrically coupled to the connection port at a first end and connectable at a second end to the implantable medical device. An impeding device is electrically coupled in series along the length of the conductor and disposed within the header block body. The impeding device is configured to raise the high-frequency impedance of the conductor. The impeding device may include a bandstop filter or an L-C tank circuit.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
Abstract:
A co-connected hermetic feedthrough, feedthrough capacitor, and leadwire assembly includes a dielectric substrate with a via hole disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via forming a hermetic seal and is electrically conductive between the body fluid side and the device side. A feedthrough capacitor is attached to the dielectric substrate and includes a capacitor dielectric substrate, an unfilled capacitor via hole including an inner metallization, a set of capacitor active electrode plates electrically coupled to the inner metallization, an outer metallization disposed and a set of capacitor ground electrode plates electrically coupled to the outer metallization. A conductive leadwire is disposed within the unfilled capacitor via hole. An electrical joint connects the conductive fill, the capacitor inner metallization along with the capacitor active electrode plates and the conductive leadwire.
Abstract:
An EMI filtered terminal assembly including at least one conductive terminal pin, a feedthrough capacitor, and a counter-bore associated with a passageway through the capacitor is described. Preferably, the feedthrough capacitor having counter-drilled or counter-bored holes on its top side is first bonded to a hermetic insulator. The counter-drilled or counter-bore holes in the capacitor provide greater volume for the electro-mechanical attachment between the capacitor and the terminal pin or lead wire, permitting robotic dispensing of, for example, thermal-setting conductive adhesive.
Abstract:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
Abstract:
Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.