Abstract:
A control system for an internal combustion engine having an exhaust gas recirculation device for recirculating a part of exhaust gases to an intake system of the engine is disclosed. An estimated exhaust gas recirculation amount is calculated using a neural network to which at least one engine operating parameter indicative of an operating condition of the engine is input. The neural network outputs an estimated value of an amount of exhaust gases recirculated by the exhaust gas recirculation device. At least one engine control parameter for controlling the engine is calculated based on the estimated exhaust gas recirculation amount.
Abstract:
In a system calculating control input Ucain based on the linear controller that calculates a provisional input Usl to converge an output of the plant to a desired value in accordance with response-specifying control algorithm based on the linear element and on the nonlinear compensator, the nonlinear characteristic adapter is provided for correcting the nonlinear compensator based on an error e_nl between an output estimated value Cain_est of the plant calculated by the controlled object model solely comprising the linear element and the output Cain of the plant. With this, even when the nonlinear characteristics of the plant change due to manufacturing variance or aging degradation, it becomes possible to accurately compensate the nonlinear characteristics by the nonlinear compensator.
Abstract:
A variable capacity fluid pump that can be controlled independently of the rotation of the engine is provided. The fluid pump comprises a planetary gear mechanism having a first gear, second gears and a third gear. The second gears are connected to a crankshaft of the engine and transmits a rotational force of the crankshaft. The third gear is connected to the fluid pump. The fluid pump further comprises braking means connected to the first gear. The breaking means generates a braking force upon the first gear. The fluid pump further comprises a one-way clutch provided between the second gears and the third gear. The braking means controls a rotational speed of the first gear so that a rotational speed of the fluid pump is controlled independently of a rotational speed of the crankshaft of the engine.
Abstract:
There is provided a control method for sufficiently compensating the non-linear characteristic for a plant having a strong non-linear characteristic and satisfying the follow-up and stability for a plant having a large control amount fluctuation. There is provided a plant control device using modulation algorithm. The control device includes: means for calculating a temporary control input for controlling the plant output to a target value; means for dividing the temporary control input into a plurality of components; means for modulating at least one of the components; and means for adding the modulated component to another component so as to generate a control input. Thus, it is possible to minimize the input fluctuation caused by modulation while maintaining the compensation ability of the non-linear characteristic such as plant friction and hysteresis attributed to the conventional modulation algorithm. Accordingly, even in a plant in which the temporary control input is greatly changed, it is possible to prevent oscillation of the output, thereby improving the controllability.
Abstract:
A control apparatus which is capable of compensating for a control error properly and quickly even under a condition where the control error is temporarily increased e.g. by degradation of reliability of the detection results of reference parameters other than controlled variables, thereby making it possible to ensure a high accuracy of control. An air-fuel ratio controller of the control apparatus calculates modified errors by multiplying e.g. an air-fuel ratio error estimated value by link weight functions, calculates basic local correction values such that the modified errors become equal to 0; calculates local correction values by multiplying the basic local correction values and the like by the link weight functions; calculates corrected valve lift by adding a lift correction value, which is the total sum of the local correction values, to a value of valve lift; calculates a first estimated intake air amount for feedforward control of an air-fuel ratio, based on the corrected valve lift; calculates an air-fuel ratio correction coefficient for feedback control of the air-fuel ratio; and calculates a fuel injection amount based on these.
Abstract:
A control apparatus and method, and an engine control unit for an internal combustion engine are provided for restraining a torque step and sudden fluctuations in rotation when an air/fuel mixture combustion mode is switched among a plurality of combustion modes, and for improving the fuel economy. A control apparatus of an internal combustion engine operated with a combustion mode switched between a stratified combustion mode and a uniform combustion mode comprises an ECU. The ECU calculates an ignition manipulated variable to cancel out a change in the engine rotational speed associated with the switching of the combustion mode when a first-time injection ratio changes during idle rotational speed control, and calculates an intake manipulated variable to cancel a change in the engine rotational speed caused by the ignition manipulated variable when the first-time injection ratio changes.
Abstract:
A workload calculation apparatus and method for an internal combustion engine, and an engine control unit are provided for accurately calculating a workload parameter indicative of the workload of the internal combustion engine. The workload calculation apparatus of the internal combustion engine ignition, which calculates the workload parameter indicative of the workload of the internal combustion engine, sets a first correlation function indicative of an integral of the product of volume data indicating a change state of the volume of the combustion chamber and a reference signal having a predetermined frequency k; generates the reference signal; detects in-cylinder pressure change amount data indicative of the amount of change in the pressure in the combustion chamber; calculates, on the basis of the generated reference signal and the detected in-cylinder pressure change amount data, a second correlation function indicative of an integral of the product of the reference signal and the in-cylinder pressure change amount data; and calculates the workload parameter on the basis of the first and second correlation functions.
Abstract:
An optimum control parameter in control of an internal combustion engine and the like is searched. In a plurality of search cycles, a control parameter that maximizes an output of an object to be controlled which shows an output realized by a given control parameter is searched using control parameters. The control parameters are provided at each search cycle by a predetermined algorithm. A periodic function of a predetermined period and a correction value obtained in a previous search cycle are added to the control parameters to obtain an input parameters to the object. An output obtained from the object with the input parameters is multiplied by the periodic function to obtain a correction value for correcting the control parameters such that the search converges.
Abstract:
Nonlinear functions (table and map) of a temperature estimation model are corrected based on outputs from a temperature sensor. An electronic control system calculates, for a plant model constructed to calculate an estimated temperature value of the plant, an estimated temperature value using a correlation model between a first parameter regarding the plant and a second parameter regarding the plant model. This control system controls the temperature of the plant based on the calculated estimated temperature value of the plant. The control system also defines a plurality of functions (Wi) in a range of a plurality of the first parameters for the correlation model, calculates correction coefficients (Kli, Kci) that adjust the height of the plurality of functions based on the output of the temperature sensor and the calculated estimated temperature value of the plant, and corrects the correlation model by the plurality of functions (Wi) and correction coefficients (Kli, Kci).
Abstract:
A method of controlling ignition timing of an engine. In the control method, final ignition timing for performing ignition is calculated by adding a variation component to a set ignition timing. According to the final ignition timing, an indicated average effective pressure of an in-cylinder pressure detected when ignition is performed is calculated. An ignition timing characteristic curve indicating the correlation between the indicated average effective pressure and the variation component is estimated and optimal ignition timing is calculated from the characteristic curve. Feedback control for converging the set ignition timing to the optimal ignition timing is then performed. Consequently, the ignition timing is controlled to an optimal ignition timing corresponding to a current operational state of the engine.