Abstract:
A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
Abstract:
An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.
Abstract:
A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved.Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
Abstract:
A scattering spectroscopy apparatus, system and method employ guided mode resonance (GMR) and a GMR grating. The apparatus includes a GMR grating having a subwavelength grating, and an optical detector configured to receive a portion of a scattered signal produced by an interaction between an excitation signal and an analyte associated with a surface of the GMR grating. A propagation direction of the received portion of the scattered signal is substantially different from a propagation direction of a GMR-coupled portion of the excitation signal within the GMR grating. The system includes the apparatus and an optical source. The method includes exciting a GMR in a GMR grating, interacting a GMR-coupled portion of the excitation signal with an analyte to produce a scattered signal and detecting a portion of the scattered signal.
Abstract:
A surface enhanced Raman spectroscopy system includes a surface enhanced Raman spectroscopy substrate and a laser source configured to emit light within a spectrum of wavelengths toward a predetermined species on or near the surface enhanced Raman spectroscopy substrate. The system further includes a set of filters positioned to be in optical communication with light scattered after the laser light interacts with the predetermined species. Each of the filters in the set is respectively configured to pass scattered light within a different predetermined narrow band of wavelengths. The system also includes a plurality of photodetectors, where each photodetector is positioned adjacent to a respective one of the filters in the set and is configured to output a signal if the scattered light passes through the respective one of the filters. The set of filters is targeted for detection of characteristic peaks of the predetermined species.
Abstract:
A light amplifying structure 100 for Raman spectroscopy includes a a resonant cavity 108. A distance between a first portion 102B and a second portion 102A of the structure 100 forming the resonant cavity 108 is used to amplify excitation light emitted from a light source 420 into the resonant cavity 108 at a first resonant frequency of the resonant cavity 108. Also, the resonant cavity 108 amplifies radiated light radiated from a predetermined molecule excited by the excitation light in the resonant cavity at a second resonant frequency of the resonant cavity 108.
Abstract:
The present invention generally relates to an edge deletion module positioned within an automated solar cell fabrication line. The edge deletion module may include a grinding wheel device for removing material from edge regions of a solar cell device and cleaning the edge regions of the solar cell device after removing the material. The edge deletion module may also include an abrasive element, a portion of which is ground as it is periodically, laterally advanced toward the grinding wheel device. A controller is provided for controlling the operation and function of various facets of the module.
Abstract:
A nanoscale switching device is provided, comprising: a first electrode of a nanoscale width; a second electrode of a nanoscale width; an active region disposed between the first and second electrodes, the active region having at least one non-conducting layer comprising an electronically semiconducting or nominally insulating and a weak ionic conductor switching material capable of carrying a species of dopants and transporting the dopants under an electric field; and a source layer interposed between the first electrode and the second electrode and comprising a highly reactive and highly mobile ionic species that reacts with a component in the switching material to create dopants that are capable of drifting through the non-conducting layer under an electric field, thereby controlling dopant profile by ionic modulation. A crossbar array comprising a plurality of the nanoscale switching devices is also provided, along with a process for making at least one nanoscale switching device.
Abstract:
Embodiments of the present invention are directed to nanowire-based systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system comprises a substrate (102) having a surface and a plurality of tapered nanowires (104) disposed on the surface. Each nanowire has a tapered end directed away from the surface. The system also includes a plurality of nanoparticles (110) disposed near the tapered end of each nanowire. When each nanowire is illuminated with light of a pump wavelength, Raman excitation light is emitted from the tapered end of the nanowire to interact with the nanoparticles and produce enhanced Raman scattered light from molecules located in close proximity to the nanoparticles.
Abstract:
A sensing device that produces a Raman signal includes micro-rods or nano-rods arranged on a substrate in a two-dimensional (2D) array, each of the rods having a length in a single row being substantially the same, with the rod length of each row being different from the rod length of each other row. Each row of rods has a respective resonant vibration frequency that varies from row to row. A source of vibration energy, operatively connected to the substrate, excites vibration in each of the rods such that a responding row resonates when an exciting frequency approaches the resonant vibration frequency of the responding row. A method includes exposing the 2D array to a light source and analyzing Raman scattering at each rod of the 2D array to render a Raman map.