SELECTIVE EPITAXIAL GROWTH BY INCUBATION TIME ENGINEERING
    11.
    发明申请
    SELECTIVE EPITAXIAL GROWTH BY INCUBATION TIME ENGINEERING 审中-公开
    选择性外来成长通过孵化时间工程

    公开(公告)号:US20120295417A1

    公开(公告)日:2012-11-22

    申请号:US13109567

    申请日:2011-05-17

    Abstract: A method of controlling the nucleation rate (i.e., incubation time) of dissimilar materials in an epitaxial growth chamber that can favor high growth rates and can be compatible with low temperature growth is provided. The nucleation rate of dissimilar materials is controlled in an epitaxial growth chamber by altering the nucleation rate for the growth of a given material film, relative to single crystal growth of the same material film, by choosing an appropriate masking material with a given native nucleation characteristic, or by modifying the surface of the masking layer to achieve the appropriate nucleation characteristic. Alternatively, nucleation rate control can be achieved by modifying the surface of selected areas of a semiconductor substrate relative to other areas in which an epitaxial semiconductor material will be subsequently formed.

    Abstract translation: 提供了一种控制外延生长室中不同材料的成核速率(即孵育时间)的方法,其可以有利于高生长速率并且可以与低温生长相容。 通过选择具有给定的天然成核特性的合适的掩蔽材料,通过相对于相同材料膜的单晶生长改变给定材料膜的生长的成核速率,在外延生长室中控制不同材料的成核速率 ,或通过改变掩模层的表面以获得适当的成核特性。 或者,可以通过相对于其后将形成外延半导体材料的其它区域修改半导体衬底的选定区域的表面来实现成核速率控制。

    Thin body semiconductor devices
    13.
    发明授权
    Thin body semiconductor devices 有权
    薄体半导体器件

    公开(公告)号:US08263468B2

    公开(公告)日:2012-09-11

    申请号:US12766859

    申请日:2010-04-24

    Abstract: A method for fabricating an FET device is disclosed. The method includes providing a body over an insulator, with the body having at least one surface adapted to host a device channel. Selecting the body to be Si, Ge, or their alloy mixtures. Choosing the body layer to be less than a critical thickness defined as the thickness where agglomeration may set in during a high temperature processing. Such critical thickness may be about 4 nm for a planar devices, and about 8 nm for a non-planar devices. The method further includes clearing surfaces of oxygen at low temperature, and forming a raised source/drain by selective epitaxy while using the cleared surfaces for seeding. After the clearing of the surfaces of oxygen, and before the selective epitaxy, oxygen exposure of the cleared surfaces is being prevented.

    Abstract translation: 公开了一种用于制造FET器件的方法。 该方法包括在绝缘体上提供主体,其中主体具有适于承载设备通道的至少一个表面。 选择身体为Si,Ge或其合金混合物。 选择体层小于临界厚度,其临界厚度定义为在高温加工过程中聚集的厚度。 这种临界厚度对于平面器件可以是约4nm,对于非平面器件而言约8nm。 该方法还包括在低温下清除氧的表面,并且通过选择性外延形成凸起的源极/漏极,同时使用清除的表面进行接种。 在氧的表面清除之后,并且在选择性外延之前,防止了清除的表面的氧曝光。

    CMOS TRANSISTORS WITH STRESSED HIGH MOBILITY CHANNELS
    16.
    发明申请
    CMOS TRANSISTORS WITH STRESSED HIGH MOBILITY CHANNELS 有权
    具有强力高移动通道的CMOS晶体管

    公开(公告)号:US20120037998A1

    公开(公告)日:2012-02-16

    申请号:US12855738

    申请日:2010-08-13

    Abstract: A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.

    Abstract translation: 形成具有压应力通道的p型场效应晶体管(PFET)和具有拉伸应力通道的n型场效应晶体管(NFET)。 在一个实施例中,使用硅 - 锗合金作为器件层,并且使用嵌入的含锗区域形成PFET的源极和漏极区域,并且使用嵌入的含硅区域形成NFET的源极和漏极区域 。 在另一个实施例中,锗层用作器件层,PFET的源极和漏极区通过将原子半径大于锗的原子半径的IIIA族元素注入到锗层的部分中而形成, 使用嵌入式硅 - 锗合金区域形成NFET的源极和漏极区域。 压应力和拉伸应力分别提高了PFET和NFET中载流子的迁移率。

    COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL
    17.
    发明申请
    COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL 有权
    组合梯形带隙异质细胞

    公开(公告)号:US20120031476A1

    公开(公告)日:2012-02-09

    申请号:US12849966

    申请日:2010-08-04

    Abstract: A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.

    Abstract translation: 光伏器件包括组成调制的半导体结构,其包括p掺杂的第一半导体材料层,第一本征成分梯度半导体材料层,本征半导体材料层,第二本征组分梯度半导体层和n掺杂的第一半导体层 半导体材料层。 第一和第二本征成分梯度半导体材料层包括具有较大带隙宽度的第一半导体材料和具有较小带隙的第二半导体材料的合金,并且第二半导体材料的浓度朝向本征半导体 第一和第二组成梯度半导体材料层中的材料层。 光电器件提供与第一半导体材料相当的开路电压,以及与第二半导体材料相当的短路电流,从而提高光伏器件的效率。

    Dual trench isolation for CMOS with hybrid orientations
    18.
    发明授权
    Dual trench isolation for CMOS with hybrid orientations 有权
    具有混合取向的CMOS的双沟槽隔离

    公开(公告)号:US08097516B2

    公开(公告)日:2012-01-17

    申请号:US12169991

    申请日:2008-07-09

    CPC classification number: H01L21/76229

    Abstract: The present invention provides a semiconductor structure in which different types of devices are located upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. In the semiconductor structure of the present invention, a dual trench isolation scheme is employed whereby a first trench isolation region of a first depth isolates devices of different polarity from each other, while second trench isolation regions of a second depth, which is shallower than the first depth, are used to isolate devices of the same polarity from each other. The present invention further provides a dual trench semiconductor structure in which pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane. In accordance with the present invention, the devices of different polarity, i.e., nFETs and pFETs, are bulk-like devices.

    Abstract translation: 本发明提供了一种半导体结构,其中不同类型的器件位于混合衬底的特定晶体取向上,这增强了每种器件的性能。 在本发明的半导体结构中,采用双沟槽隔离方案,由此第一深度的第一沟槽隔离区将彼此不同极性的器件隔离,而第二深度的第二沟槽隔离区比第 第一深度用于隔离相同极性的设备。 本发明还提供一种双沟槽半导体结构,其中pFET位于(110)结晶平面上,而nFET位于(100)晶面上。 根据本发明,不同极性的器件,即nFET和pFETs是大块状器件。

    FORMATION OF SOI BY OXIDATION OF SILICON WITH ENGINEERED POROSITY GRADIENT
    20.
    发明申请
    FORMATION OF SOI BY OXIDATION OF SILICON WITH ENGINEERED POROSITY GRADIENT 失效
    通过氧化硅与工程化孔隙度梯度形成SOI

    公开(公告)号:US20100006985A1

    公开(公告)日:2010-01-14

    申请号:US12170459

    申请日:2008-07-10

    CPC classification number: H01L21/76245

    Abstract: A method is provided for making a silicon-on-insulator substrate. Such method can include epitaxially growing a highly p-type doped silicon-containing layer onto a major surface of an underlying semiconductor region of a substrate. Subsequently, a non-highly p-type doped silicon-containing layer may be epitaxially grown onto a major surface of the p-type highly-doped epitaxial layer to cover the highly p-type doped epitaxial layer. The overlying non-highly p-type doped epitaxial layer can have a dopant concentration substantially lower than the dopant concentration of the highly p-type doped epitaxial layer. The substrate can then be processed to form a buried oxide layer selectively by oxidizing at least portions of the highly p-type doped epitaxial layer covered by the non-highly p-type doped epitaxial layer, the buried oxide layer separating the overlying monocrystalline semiconductor layer from the underlying semiconductor region. Such processing can be performed while simultaneously annealing the non-highly p-type doped epitaxial layer.

    Abstract translation: 提供了一种制造绝缘体上硅衬底的方法。 这种方法可以包括将高p型掺杂的含硅层外延生长到衬底的下面的半导体区域的主表面上。 随后,可以在p型高掺杂外延层的主表面上外延生长非高度p型掺杂的含硅层,以覆盖高度p型掺杂的外延层。 上覆非高p型掺杂外延层可以具有基本上低于高p型掺杂外延层的掺杂剂浓度的掺杂剂浓度。 然后可以通过氧化由非高p型掺杂的外延层覆盖的高p型掺杂外延层的至少一部分来选择性地处理衬底以形成掩埋氧化物层,将覆盖的单晶半导体层 从底层半导体区域。 可以在非高p型掺杂外延层同时退火的同时执行这种处理。

Patent Agency Ranking