Abstract:
A single-to-multi mode converter and an optical code division multiple access system using the same. The mode converter includes first, second, and third optical waveguides. The first optical waveguide is formed of a single-mode optical fiber and outputs a single-mode optical signal. The second optical waveguide converts the single-mode optical signal output from the first optical waveguide to a multi-mode optical signal and allows the optical power of the single-mode optical signal to be coupled to each mode of the multi-mode optical signal. The third optical waveguide is formed of a multi-mode optical fiber and transmits the multi-mode optical signal output from the second optical waveguide.
Abstract:
Provided is a measurement device. The measurement device includes a sensor, a wavelength-tunable light source, an additional light source, a coupler, and an optical power measurer. The sensor accepts a sample. The wavelength-tunable light source irradiates wavelength-tunable light to detect a reaction of the sensor. The additional light source irradiates wavelength-fixed light to detect an initial time of the reaction. The coupler combines the wavelength-tunable light source and the additional light source and irradiates the combined input light on the sensor. The optical power measurer detects the reaction of the sensor from an output light transmitted through or reflected by the sensor.
Abstract:
Provided are a biochip and a method of detecting a reaction from the biochip. This method includes preparing a first mixture solution of polyvinylpyrrolidone (PVP) and a sample including target molecules, measuring absorbance or transmittance of the first mixture solution, preparing a second mixture solution including the PVP, the sample, and a receptor of the target molecules, measuring absorbance or transmittance of the second mixture solution, and calculating an absorbance or transmittance difference between the first mixture solution and the second mixture solution. Thus, it is possible to reduce the production cost of the biochip by inducing a reaction of an antigen and an antibody using PVP. Further, it is possible to detect an accurate quantity of the antigen by analyzing a quantity of antigen on the basis of the absorbance or transmittance difference.
Abstract:
Provided is a biosensor chip. The biosensor chip includes a plurality of biosensor cells that are arranged in a matrix and selectively generate and output a sensed signal by addressing of external light, at least one sensing line that is simultaneously connected with the plurality of biosensor cells and transmits the sensed signal from one selected from the biosensor cells, and an output terminal that receives the sensed signal from the sensing line and outputs the sensed signal to an external reader. Thus, the biosensor cells are set in array in the biosensor chip without a separate driving unit, so that a process of manufacturing the biosensor chip is simplified. The biosensor cell to be sensed is selectively addressed through the external light, so that it is possible to reduce a price of the biosensor chip used as a disposable chip.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
Abstract:
Provided is a portable optical biosensor measuring apparatus. The portable optical biosensor measuring apparatus includes a light emitting unit emitting a light having a first line width, an optical biosensor receiving an output light from the light emitting unit, and a peak wavelength detector detecting one peak wavelength having a second line width from a light from the optical biosensor. The first line width is greater than the second line width, and the optical biosensor provides the peak wavelength according to an antigen-antibody reaction.
Abstract:
Provided are a laser diode which has low power consumption and can realize a high on/off extinction ratio by small variation of current and which can modulate optical signals at high speed, an optical transmitter, and an optical communication apparatus including the optical transmitter. The laser diode having an abrupt turn-on characteristic, comprises: an active region in which light is generated by application of current and gain is controlled; and an absorption region absorbing light generated in the laser diode at a current lower than an abrupt threshold current that is the same as or lower than an operation current, the operation current being a current level that allows the laser diode to generate a target optical power, wherein the output optical power rapidly increases at the abrupt threshold current.
Abstract:
A passive optical network system includes: a plurality of optical signal splitter receiving optical signals from a plurality of optical network units (ONUs) to provide a plurality of upstream optical signals having different wavelengths; a hybrid optical filter multiplexing the plurality of upstream optical signals in a wavelength division multiplexing (WDM) scheme; and an optical line terminal (OLT) receiving the multiplexed upstream optical signals in a time division multiplexing (TDM) scheme. Therefore, the network system can be easily expanded when the number of subscribers increases, and the optical loss can be minimized.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
Abstract:
Provided is a filtering device including a filter part having a plurality of filters stacked to filter contaminants in fluid, and a sample part disposed on an outer plane of the filter part and having a plurality of samples corresponding to the filters, respectively. Therefore, a filter exchange period can be accurately determined by measuring properties of the filter varied during filtering of contaminants, and indiscriminate exchange of the filters can be prevented to reduce maintenance cost.