Abstract:
Disclosed are implantable medical devices with enhanced patency. Expanded polytetrafluoroethylene small caliber vascular grafts coated with polymer bound bio-active agents that exhibit enhanced patency are disclosed. The polymer bound bio-active agents can include anti-thrombogenic agents, antibiotics, antibacterial agents and antiviral agents. Methods of preparing same are also provided.
Abstract:
A flexible implantable luminal device is disclosed, which is made from a porous cylindrical tube manufactured from extruded fluoropolymer. A fluoropolymer filament is wrapped helically around the external surface of the tube. The filament is fused to the tube to form a unitary composite structure by heating the wrapped tube to a temperature above the melting points of the fluoropolymers. The resulting composite is a radially reinforced flexible luminal prosthesis suitable for implantation, particularly, as a vascular graft or endoprosthesis. Also disclosed is a method for manufacturing the prosthesis.
Abstract:
A prosthetic heart valve includes a base and a plurality of polymeric leaflets. Each leaflet has a root portion coupled to the base, and each leaflet has an edge portion substantially opposite the root portion and movable relative to the root portion to coapt with a respective edge portion of at least one of the other leaflets of the plurality of leaflets. Each leaflet includes) at least two polymers along at least one portion of the leaflet, and each leaflet has a composition gradient of each of the at least two polymers along at least one portion of the leaflet.
Abstract:
Medical devices and methods for making and using the same. An example medical device may include a guidewire. The guidewire may include an elongate shaft. The shaft may include a porous metal alloy. The porous metal alloy may be arranged so that the porous metal alloy has a first pore distribution along a first portion of the shaft and a second pore distribution different from the first pore distribution along a second portion of the shaft.
Abstract:
An embolic protection filter having an improved filter frame and method of making the same. In at least some embodiments, the present invention includes an embolic protection filter coupled to an elongate shaft. The filter may include a filter frame assembly having one or more frame members. The frame members may include a filter mouth defining portion.
Abstract:
A method of producing a tubular member which includes providing at least one micro-extruder configured to extrude at least one material and providing a surface configured to accept the material extruded from the micro-extruder.
Abstract:
Devices and methods for monitoring the flow of blood through an intravascular device are disclosed. An apparatus for monitoring blood flow in accordance with an exemplary embodiment of the present invention includes an intravascular device coupled to an elongated member, a first sensor adapted to measure fluidic pressure proximal the intravascular device, a second sensor adapted to measure fluidic pressure distal the intravascular device, and a control unit for comparing the signals received from the first and second sensors to determine the pressure drop across the intravascular device.
Abstract:
Medical devices and methods for manufacturing the same. An example medical device includes a shaft or substrate that is coated with a lubricious coating. The coating includes a plurality of sections that have differing lubricities. At least some of the sections include a hydrophilic polyurethane. A coated section can include an aliphatic polyether polyurethane. The methods for manufacturing the medical devices may include at least in part microdispensing such as inkjet-type printing.
Abstract:
Intravascular filters formed by a molding process can have a plurality of integrally formed apertures. A molding process can utilize a mold assembly that includes a mold having a mold surface and a die having a die surface. The mold assembly includes plurality of protrusions that extend from at least one of the mold surface and the die surface. A molten material is placed within a portion of the mold, and the die is then inserted into the mold such that the plurality of protrusions span a distance between the die surface and the mold surface. The molten material is allowed to solidify, thereby forming a filter membrane that includes a plurality of integrally formed apertures.