Abstract:
The present invention provides engineered protease variants. In particular, the protease variants comprise combinable mutations at selected surface positions that affect the charge and/or hydrophobicity of the enzyme to enhance at least one desired property of the resulting variant enzyme in a chosen application. Compositions comprising the protease variants, and methods for using the same are also provided.
Abstract:
The present invention provides protease variants, compositions comprising protease variants, and methods of using such protease variants and compositions.
Abstract:
Novel enzyme variants including protease variants derived from the DNA sequences of naturally-occurring or recombinant non-human proteases are disclosed. The variant proteases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant protease to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor protease. Such variant proteases have properties which are different from those of the precursor protease, such as altered wash performance. The substituted amino acid residue correspond to positions 27, 45, 170, 181, 251 and 271 of Bacillus amyloliquefaciens subtilisin. Additional variants comprising at least one additional substitution at a position selected from 1, 14, 49, 61, 87, 100, 102, 118, 128, 204 and 258 of Bacillus amyloliquefaciens subtilisin are also described.
Abstract:
Disclosed are compositions comprising variants of alpha-amylase that have alpha-amylase activity and which exhibit altered properties relative to a parent AmyS-like alpha-amylase from which they are derived. The compositions comprise an additional enzyme such as a phytase. Also disclosed are methods of using the compositions, and kits related thereto.
Abstract:
A method is provided for improving the uptake of a cationic compound onto a polyester article starting material, comprising the steps of: (a) obtaining a polyesterase enzyme; (b) contacting said polyesterase enzyme with said polyester article starting material under conditions and for a time suitable for said polyesterase to produce surface modification of said polyester article starting material and produce a surface modified polyester; (c) contacting said modified polyester article, subsequently or simultaneously with said step (b) with a cationic compound whereby adherence of said cationic compound to said modified polyester is increased compared to said polyester starting material. Also disclosed is a method for increasing the hydrophilicity of a polyester to improve fabric characteristics such as stain resistance, wettability and/or dyeability.
Abstract:
The present invention provides protease variants, compositions comprising protease variants, and methods of using such protease variants and compositions.
Abstract:
Described are variants (mutants) of a parent alpha-amylase having alpha-amylase activity and exhibiting altered properties relative to the parent alpha-amylase, and methods of use, thereof.
Abstract:
The present invention provides methods for protein engineering. Specifically, the invention provides methods utilizing site evaluation libraries to design libraries that optimize two or more properties of a protein. The present invention also provides variant subtilisins suitable for various uses.
Abstract:
Novel enzyme variants including protease variants derived from the DNA sequences of naturally-occurring or recombinant non-human proteases are disclosed. The variant proteases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant protease to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor protease. Such variant proteases have properties which are different from those of the precursor protease, such as altered wash performance. The substituted amino acid residue correspond to positions 27, 45, 170, 181, 251 and 271 of Bacillus amyloliquefaciens subtilisin. Additional variants comprising at least one additional substituion at a positon selected from 1, 14, 49, 61, 87, 100, 102, 118, 128, 204 and 258 of Bacillus amyloliquefaciens subtilisin are also described.
Abstract:
The present invention provides methods for engineering proteins to optimize their performance under certain environmental conditions of interest. In some embodiments, the present invention provides methods for engineering enzymes to optimize their catalytic activity under particular environmental conditions. In some preferred embodiments, the present invention provides methods for engineering enzymes to optimize their catalytic activity and/or stability under adverse environmental conditions. In some preferred embodiments, the present invention provides methods for engineering enzymes to optimize their storage stability, particularly under adverse environmental conditions. In some preferred embodiments, the present invention provides methods for altering the net surface charge and/or surface charge distribution of enzymes (e.g., metalloproteases) to obtain enzyme variants that demonstrate improved performance and/or stability in detergent formulations as compared to the starting or parent enzyme.