摘要:
Power management of an embedded dynamic random access memory (eDRAM) by receiving an eDRAM power state transition event and determining both the current power state of the eDRAM and the next power state of the eDRAM from the power states of: a power-on state, a power-off state, and a self-refresh state. Using the current power state and the next power state to determine whether a power state transition is required, and, in the case that a power state transition is required, transition the eDRAM to the next power state. Power management is achieved because transitioning to a power-off state or self-refresh state reduces the amount of power consumed by the eDRAM as compared to the power-on state.
摘要:
In an embodiment, a processor includes a first domain with at least one core to execute instructions and a second domain coupled to the first domain and including at least one non-core circuit. These domains can operate at independent frequencies, and a power control unit coupled to the domains may include a thermal logic to cause a reduction in a frequency of the first domain responsive to occurrence of a thermal event in the second domain. Other embodiments are described and claimed.
摘要:
Techniques described above may enhance the power-performance efficiency of a processor, SoC, or a computing system. Embodiments described here allow an increase in frequency of the clock signal to a peak frequency value in response to detecting an occurrence of a burst of high activity within the low processor utilization periods. A power management unit may accumulate the budget during the low or idle processor utilization periods and the level of activity of the burst of high activity signal may be determined. The PMU may increase the frequency of the clock signal provided to the processing cores if the level of the burst of high activity exceeds a first threshold value and an accumulated budget value exceeds a second threshold value.
摘要:
In one or more embodiments, a fixed time interval for a system is determined. The fixed time interval corresponds to time between clock ticks. A random time interval is determined based on the fixed time interval and an offset. One or more electronic components affixed to a motherboard are transitioned to a new power state when the random time interval has elapsed. By introducing a randomization to the timing element to a control signal that drives the power state transition, a periodicity for the system is disrupted. The disruption in periodicity mitigates acoustic noise generated by vibrations in electronic components and motherboards affected by current and/or voltage transitions.
摘要:
Power management of an embedded dynamic random access memory (eDRAM) using collected performance counter statistics to generating a set of one or more eDRAM effectiveness predictions. Using a set of one or more eDRAM effectiveness thresholds, each corresponding to one of the set of eDRAM effectiveness predictions, to determine whether at least one eDRAM effectiveness prediction has crossed over threshold. In the case that at least one eDRAM effectiveness prediction has crossed over its threshold, transitioning the eDRAM to a new power state. Power management is achieved by transitioning to a power-off state or self-refresh state and reducing the amount of power consumed by the eDRAM as compared to a power-on state.
摘要:
Power management of an embedded dynamic random access memory (eDRAM) by receiving an eDRAM power state transition event and determining both the current power state of the eDRAM and the next power state of the eDRAM from the power states of: a power-on state, a power-off state, and a self-refresh state. Using the current power state and the next power state to determine whether a power state transition is required, and, in the case that a power state transition is required, transition the eDRAM to the next power state. Power management is achieved because transitioning to a power-off state or self-refresh state reduces the amount of power consumed by the eDRAM as compared to the power-on state.
摘要:
A processor is described that includes a plurality of execution units in a processor core. The processor also may include power management circuitry to determine a configuration with a lowest power cost from a plurality of configurations that each have a different number of enabled execution units for a same active performance state. A method may include determining with power management circuitry of a processor a configuration with a lowest power cost from a plurality of configurations that each have a different number of enabled execution units in a processor core of the processor for a same active performance state.
摘要:
A processor is described that includes a plurality of execution cores. The processor also includes power management circuitry to dynamically determine a number of the execution cores that, when active, will cause the processor to operate in a substantially linear power consumption vs. frequency region of operation such that performance gain as a function of power consumption increase with the number of cores is higher as compared to any other number of active execution cores within an established power envelope.