Abstract:
A coated abrasive product including green, unfired abrasive aggregates having a generally spheroidal or toroidal shape, the aggregates formed from a composition comprising abrasive grit particles and a nanoparticle binder, wherein the abrasive aggregates are dispersed within a polymer resin coating, and wherein the coated abrasive product is capable of polishing an optical component, including ophthalmic lenses without the need to apply an abrasive slurry.
Abstract:
Abrasive aggregates and fixed abrasive articles comprising formaldehyde-free polymer binder and a plurality of abrasive grains are provided that are particularly suitable for machining operations, in which abrasion is carried out to remove material and improve surface quality. Certain embodiments combine an abrasive grain, which can be in the form of microparticles, and a formaldehyde-free polymer binder, which can be in the form of a polymer resin and cross-linking agent. Optionally, the abrasive aggregate can contain a secondary cross-linking agent, or a functional filler, such as a grinding aid.
Abstract:
A backplane for an electro-optic display comprises a pixel electrode (104), a voltage supply line (C) arranged to supply a voltage to the pixel electrode (104), and a micromechanical switch (106, 112) disposed between the voltage supply line (C) and the pixel electrode (104), the micromechanical switch (106, 112) having an open state, in which the voltage supply line (C) is not electrically connected to the pixel electrode (104), and a closed state, in which the voltage supply line (C) is electrically connected to the pixel electrode (104).
Abstract:
In one embodiment of the invention, a method of manufacturing a semiconductor device comprises the steps of: a) providing an organic semiconductor layer; b) depositing a reactive species on a portion of the organic semiconductor layer; and c) reacting the reactive species with the portion of the organic layer to form a dielectric layer.
Abstract:
In a method for fabricating a thin film of polymer, particularly a semiconducting thin film of polymer with an improved structural order, wherein the thin film is formed by deposition of a polymer material onto a solid substrate material from a polymer solution formed by means of a solvent, the polymer solution is provided in a closed container such that a free volume is left in the container above the polymer solution and the substrate material immersed in the solution, whereupon the substrate material with a thin film deposited thereon is withdrawn from the polymer solution with a withdrawal speed being selected dependent on the concentration of the polymer solution, until the substrate material is located in the free volume a certain distance above the polymer solution. The substrate material is kept in vertical position in the free volume while the solvent evaporates, whereupon the substrate material with the thin film is removed from the container for further drying in a vacuum oven.—Use in fabrication of organic thin-film transistors.
Abstract:
A coated abrasive product includes green, unfired abrasive aggregates having a generally spheroidal or toroidal shape, the aggregates formed from a composition comprising abrasive grit particles and a nanoparticle binder, wherein the abrasive aggregates are dispersed within a polymer resin coating, and wherein the coated abrasive product is capable of superfinishing a metal surface having an initial Ra in the range of about 1.5 micro inches to about 12.5 micro inches prior to application of the coated abrasive product and after application the surface has an Ra of less than 1.0 micro inch.
Abstract:
An abrasive article comprising an abrasive particle including a core comprising a compressible material, an intermediate layer comprising a binder material overlying an exterior surface of the core, and an outer layer comprising abrasive grains overlying the intermediate layer.
Abstract:
The invention relates to electro-optic displays and methods for driving such displays. The invention provides (i) electrochromic displays with solid charge transport layers; (ii) apparatus and methods for improving the contrast and reducing the cost of electrochromic displays; (iii) apparatus and methods for sealing electrochromic displays from the outside environment and preventing ingress of contaminants into such a display; and (iv) methods for adjusting the driving of electro-optic displays to allow for environmental and operating parameters.
Abstract:
In a means for electrical contacting or isolation of organic or inorganic semiconductors in electronic and optoelectronic devices, particularly thin-film devices, the means comprises a substrate (1) in the form of a contact material (1a) or an isolating material (4). A charge transfer material (2) is provided patterned or unpatterned on or at the surface of the substrate and includes charge transfer components in the form of donors and/or acceptors. The charge transfer material forms a self-assembling layer (3) on one or more atomic and/or molecular layers. The charge transfer material (2) has a direct or indirect bond to the surface of the substrate (1) and further forms a charge transfer complex with a thereabove adjacently provided organic or inorganic semiconductor (6). The charge transfer material (2) then forms a donor or acceptor material in the charge transfer complex depending upon respectively whether the semiconductor (6) itself is an acceptor or donor material.
Abstract:
The invention relates to electro-optic displays and methods for driving such displays. The invention provides (i) electrochromic displays with solid charge transport layers; (ii) apparatus and methods for improving the contrast and reducing the cost of electrochromic displays; (iii) apparatus and methods for sealing electrochromic displays from the outside environment and preventing ingress of contaminants into such a display; and (iv) methods for adjusting the driving of electro-optic displays to allow for environmental and operating parameters.