摘要:
The present invention provides a kind of flexible transparent-semitransparent hybrid solar window membrane modules. A module comprises a series of thin film transparent organic polymer solar cells, semitransparent perovskite solar cells, or hybrid of them. Both types of the solar cells are deposited onto a flexible transparent polymer membrane substrate. Those visibly transparent polymer solar cells contain a UV- and/or NIR-sensitive polymer layer to allow most visible light transmitted and semitransparent perovskite solar cells allows some portion of visible light transmitting. The resultant modules obtain benefits of transparency from the polymer cells and high efficiency from the perovskite ones. Both groups of the solar cells on one module have to be interconnected respectively. Two interconnection methods, the 3P scribing process and conductive strip connection, have been utilized. The modules are encapsulated with transparent materials to increase their lifetimes. These flexible solar window membrane modules can be adhered onto the glass windows of commercial buildings and family houses through electrostatic adsorption as solar energy sources. The modules used outdoors may be interconnected one another wired or wireless via resonant inductive coupling technology.
摘要:
An electroplating-spraying hybrid apparatus that is assembled with modular electroplating sections in a roll-to-roll continuous electroplating and spraying process is provided. The length of the electroplating cell for a modular electroplating section is adjustable to fit different current densities and deposition thickness required in a roll-to-roll process. In addition, the electrolyte solution tanks can be simply connected or disconnected from the modular electroplating sections and moved away. With these designs, a multiple layers of coating with different metals or semiconductors can be electrodeposited through this apparatus with a flexibility to easily change the plating orders of different materials. Moreover, some dopant layers can be deposited with a spray pyrolysis method to coat materials that are not suitable for electroplating. This apparatus is particularly useful in manufacturing Group IB-IIIA-VIA and Group IIB-VIA thin film solar cells such as CIGS and CdTe absorbers on flexible substrates through a roll-to-roll process.
摘要:
A chemical bath deposition method based on a new CBD reactor is presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This method deposits thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
摘要:
A chemical bath deposition apparatus is presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This apparatus deposits thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
摘要:
A chemical bath deposition method based on a new CBD reactor is presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This method deposits thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
摘要:
An industrial production line is presented to fabricate CIGS thin film solar cells on continuous flexible substrates in roll-to-roll processes. It provides an entire solution including procedures and related equipments from starting blank substrates to completed solar cells that can be used to fabricate solar modules. This production line contains some core apparatuses, such as a modular electroplating system to deposit CIGS materials, a modular thermal reactor to annealing the CIGS films, and a chemical bath deposition reactor to coat CdS buffer layer, are recently invented by the present inventor. The present production line can be conveniently used to prepare the CIGS thin film solar cells with high efficiency but low cost.
摘要:
An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
摘要:
An electrochemical deposition method to form uniform and continuous Group IIIA material rich thin films with repeatability is provided. Such thin films are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the Group IIIA material rich thin film is deposited on an interlayer that includes 20-90 molar percent of at least one of In and Ga and at least 10 molar percent of an additive material including one of Cu, Se, Te, Ag and S. The thickness of the interlayer is adapted to be less than or equal to about 20% of the thickness of the Group IIIA material rich thin film.
摘要:
An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
摘要:
A flexible solid-state multiple-stacked planar lithium-ion battery module is provided. It comprises a number of lithium-ion battery groups that consist of back-to-back multiple-stacked electrochemical cells interconnected in parallel. Solid electrolytes are used in all of electrochemical cells. The battery groups are packed and sealed with flexible polymeric materials. The battery groups are combined into some battery sections. The positive and negative terminals of every battery group are connected to corresponding side terminals which are controlled with side switches. The positive terminals of the first battery groups in every battery section and the negative terminals of the last battery groups in every battery section are further connected to a positive rotary switch and a negative rotary switch, respectively. With these different switches and circuit control boxes, input and output voltages and currents of the battery module can be freely adjusted and controlled.