Abstract:
A bundle trailer for containers including (i) a supporting frame on which a plurality of bundles are located; (ii) a plurality of bundles, each bundle comprising: a bundle frame, a plurality of containers containing a chemical, and at least one bundle value for controlling delivery of the chemical in the containers; (iii) at least one trailer valve; and (iv) at least one clamp for fixing the bundle is disclosed. The bundle trailer is capable of delivering high purity hygroscopic, corrosive chemicals, such as elemental fluorine and mixtures thereof, with good flexibility, high safety, and low cost.
Abstract:
Provided is an organic light emitting device including an anode, a cathode, and a light emitting layer disposed between the anode and the cathode, wherein the cathode has a structure including a first metal layer and a second metal layer, or a structure including a first metal layer, a second metal layer, and one selected from the group consisting of an oxide layer, a nitride layer, and a nitric oxide layer, and wherein the cathode has low resistance.
Abstract:
A photoluminescence diode which may decrease a driving voltage may include an anode, a cathode, an emission layer interposed between the anode and the cathode, and an electron accepting layer interposed between the emission layer and the cathode and including one material selected from fullerene, methanofullerene, doped fullerene, doped methanofullerene, a derivative thereof, and a mixture thereof.
Abstract:
A semiconductor memory cell is provided that includes a trench capacitor and an access transistor. The access transistor comprises a source region, a drain region, a gate structure overlying the trench capacitor, and an active body region that couples the drain region to the source region. The active body region directly contacts the trench capacitor.
Abstract:
An organic light emitting display device includes a substrate; a first electrode layer formed on the substrate; an emission structure layer formed on the first electrode layer; an electron injection layer (EIL) formed immediately on the emission structure layer and comprising a composite layer of LiF:Yb; and a second electrode layer formed on the EIL.
Abstract:
Methods are provided for forming semiconductor devices. One method includes forming a first layer overlying a bulk semiconductor substrate. A second layer is formed overlying the first layer. A plurality of trenches is etched into the first and second layers. Portions of the second layer that are disposed between the plurality of trenches define a plurality of fins. A gate structure is formed overlying the plurality of fins. The first layer is etched to form gap spaces between the bulk semiconductor substrate and the plurality of fins. The plurality of fins is at least partially supported in position adjacent to the gap spaces by the gate structure. The gap spaces are filled with an insulating material.
Abstract:
An apparatus for generating a parity bit for turbo decoding, and a MAP (Maximum A Posteriori) apparatus are provided. The apparatus for generating a parity bit for turbo decoding includes: a index converter calculating forward and reverse state matrices with respect to a parity bit by maintaining or changing the relationship between the forward and reverse state matrices with respect to information bits and input symbols according to an encoder state; and a parity calculation unit calculating a parity bit by using the forward and reverse state matrices calculated by the parity state matric calculation unit.
Abstract translation:提供了一种用于生成用于turbo解码的奇偶校验位的装置,以及MAP(Maximum A Reareriori)装置。 用于生成用于turbo解码的奇偶校验位的装置包括:索引转换器,相对于奇偶校验位,通过根据信息比特和输入符号保持或改变正向和反向状态矩阵之间的关系来计算正向和反向状态矩阵 编码器状态; 以及奇偶校验计算单元,通过使用由奇偶校验状态矩阵计算单元计算的正向和反向状态矩阵来计算奇偶校验位。
Abstract:
An information storage device includes a magnetic track and a magnetic domain wall moving unit. The magnetic track has a plurality of magnetic domains and a magnetic domain wall between each pair of adjacent magnetic domains. The magnetic domain wall moving unit is configured to move at least the magnetic domain wall. The information storage device further includes a magneto-resistive device configured to read information recorded on the magnetic track. The magneto-resistive device includes a pinned layer, a free layer and a separation layer arranged there between. The pinned layer has a fixed magnetization direction. The free layer is disposed between the pinned layer and the magnetic track, and has a magnetization easy axis, which is non-parallel to the magnetization direction of the pinned layer.
Abstract:
Fabrication methods for semiconductor device structures are provided. One method for fabricating a semiconductor device structure involves forming a first layer of a first dielectric material overlying a doped region formed in a semiconductor substrate, forming a first conductive contact electrically connected to the doped region within the first layer, forming a dielectric cap on the first conductive contact, forming a second layer of a second dielectric material overlying the dielectric cap and a gate structure overlying the semiconductor substrate, and forming a second conductive contact electrically connected to the gate structure within the second layer.
Abstract:
A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.