Abstract:
A successive approximation register (SAR) analog-to-digital converter (ADC) is disclosed. A first and second capacitor DACs receive a first and second input signals respectively. A first coarse comparator compares an output of the first capacitor DAC with a window reference voltage, a second coarse comparator compares an output of the second capacitor DAC with the window reference voltage, and a fine comparator compares the output of the first capacitor DAC with the output of the second capacitor DAC. A SAR controller receives outputs of the first and second coarse comparators to determine whether the outputs of the first and second capacitor DACs are within a predictive window determined by the window reference voltage. The SAR controller bypasses at least one phase of analog-to-digital conversion of the SAR ADC when the outputs of the first capacitor DAC and the second capacitor DAC are determined to be within the predictive window. The SAR controller decodes the outputs of the first and second coarse comparators and the fine comparator to obtain a converted output of the SAR ADC.
Abstract:
A pseudo-differential switched-capacitor circuit using integrator-based common-mode stabilization technique is disclosed. A pseudo-differential switched-capacitor circuit with the differential floating sampling (DFS) technique has a common-mode gain value of one (1). An integrator is electrically coupled to the differential positive/negative outputs of the DFS circuit, and the integrator feeds back integrator output to the DFS circuit by detecting common-mode voltage disturbance at the differential positive output (Vout+) and negative output (Vout−), thereby stabilizing output common-mode level of the differential positive output (Vout+) and negative output (Vout−) at a desirable level.
Abstract:
A pseudo-differential switched-capacitor circuit, which can be applied to various signal processing circuits, employs a floating sampling technique and an integrator feedback loop for isolating a common mode voltage disturbance and restraining a charge injection effect. The pseudo-differential switched-capacitor circuit includes a differential floating sampling circuit that has a pseudo-differential architecture, and an integrator for reducing the charge injection effect within the differential floating sampling circuit.
Abstract:
The present invention is directed to a multiplying digital-to-analog converter (MDAC) and its method. First ends of capacitors are electrically coupled to an inverting input node of an amplifier, wherein two of the capacitors are alternatively configured as a feedback capacitor. Each capacitor is composed of at least two sub-capacitors. Second ends of capacitors are electrically coupled to an input signal via a number of sampling switches, and the second ends of the capacitors are electrically coupled to DAC voltages respectively via a number of amplifying switches. A sorting circuit is configured to sort the sub-capacitors, wherein the sorted sub-capacitors are then paired in a manner such that variance of mismatch among the sub-capacitors is thus averaged.
Abstract:
An analog-to-digital converter (ADC) for pipelined ADCs or cyclic ADCs is disclosed. The ADC includes at least one pair of two stages connected in series, and the two stages have different bits of resolution. An amplifier is shared by the pair of two stages such that the two stages operate in an interleaved manner. Accordingly, this stage-resolution scalable opamp-sharing technique is adaptable for pipelined ADC or cyclic ADC, which substantially reduces power consumption and increases operating speed.
Abstract:
A method of fabricating a dielectric layer is described. A twelve-inch wafer having at least three metallic layers thereon is provided. A dielectric layer is formed over the twelve-inch wafer by performing a high-density plasma process. The high-density plasma process includes applying a total bias radio frequency (RF) power and a total source radio frequency (RF) power. Furthermore, the ratio between the total bias RF power and the total source RF power is about 0.7 to 2.5.
Abstract:
A main digital-to-analog converter (DAC) receives at least one input and generates an adjusted input. A SAR unit generates a code for controlling the main DAC based on a comparison output of a comparing unit that receives the adjusted input. A reference generator, under control of the generated code, generates at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.
Abstract:
A method for correcting a voltage offset influence of a pipelined analog to digital converter is disclosed, in which the method generates a first stage code and a first output voltage according to a first input voltage, generates a second stage code according to the first output voltage, generates a check code according to the first output voltage, determines a first correction code by referring to the first stage code and the check code, and corrects the first stage code with the first correction code when the first stage code is different from the first correction code.
Abstract:
A SAR ADC, used for converting an analog input into an N-bit digital output in a conversion phase, includes: three comparators, each two capacitor sub-arrays, coupled to the three comparators respectively, wherein the two capacitor sub-arrays are used for sampling the analog input and providing two inputs for the corresponding comparator; and an SAR logic, coupled to the three comparators and the three capacitor arrays, for, in each conversion sub-phase, coupling two selected capacitors of each capacitor sub-array to a set of determined reference levels, coupling two capacitors, which were selected in a preceding conversion sub-phase, of each capacitor sub-array to a set of adjusted reference levels obtained based on a set of data outputted from the three comparators in a preceding conversion sub-phase, and then generating two bits of the N-bit digital output by encoding a set of data outputted from the three comparators.
Abstract:
A stage of a pipeline analog-to-digital converter (ADC) is provided according to embodiments of the present invention. The stage of the present invention has double-amplifier architecture and uses level-shifting technique to generate a residue of the stage. The amplifiers of the stage are implemented in two different split paths, thereby to generate a relatively coarse amplification result and a relative fine amplification result. The relatively coarse amplification result is used to level-shift the output level of the amplifier. As a result, the stage of the present invention can have a correct residual by using amplifiers of moderate quality.