Abstract:
A method of operating a semiconductor memory device includes performing a first program loop including a first program operation and a first verification operation in order to store a lower bit data of n-bit data in memory cells coupled to a page, performing a subprogram loop for memory cells of an erase state, having threshold voltages lower than a target voltage of a negative potential, so that the threshold voltages of the memory cells of the erase state become higher than the target voltage, and performing a second program loop including a second program operation and a second verification operation in order to store an upper bit data of the n-bit data in the memory cells.
Abstract:
Various embodiments of a semiconductor memory apparatus are disclosed. In one exemplary embodiment, the semiconductor memory apparatus may include: a column control signal generator configured to generate a column control signal for a pair of bit lines corresponding to a data mask during a data mask operation; and a bit line sense amplifier configured to sense and amplify a voltage difference between the pair of bit lines and electrically couple the pair of bit lines to a pair of segment input/output lines in response to the column control signal.
Abstract:
A water treatment apparatus capable of sterilizing a storage tank and a sterilizing and cleansing method thereof are disclosed. The water treatment apparatus includes: a filter unit purifying raw water; a storage tank connected to the filter unit and storing purified water which has been filtered through the filter unit; an electrolytic sterilizer installed between the filter unit and the storage tank, electrolyzing only purified water which has been filtered through at least a portion of the filter unit to generate sterilization water, and supplying the sterilization water to the storage tank; a drain unit connected to the storage tank and discharging water accommodated in the storage tank; and a control unit controlling a water purification mode of the filter unit and a sterilization mode through the electrolytic sterilizer and the drain unit.
Abstract:
The present invention relates to a display device preventing a getter layer from contacting elements disposed in the display device, and an embodiment of the present invention may be achieved in a whole or in part by a display device comprising: A substrate; A pixel part disposed on the substrate; A cap comprising a first region attached on the substrate; and a second region having a position different from a position of the first region, connected with the first region, and corresponding to the pixel part; A getter layer disposed on the second region of the cap; and A protecting layer disposed on the getter layer.
Abstract:
A memory includes at least one first flag cell configured to store first flag data, at least one second flag cell configured to store second flag data, at least one first sensing node having a voltage level determined by the first flag data of the first flag cell, at least one second sensing having a voltage level determined by the second flag data of the second flag cell, a selection circuit configured to select the first sensing node or the second sensing node in response to a flag address; and a determination circuit having an internal node through which current corresponding to a voltage level of a selected sensing node flows and configured to determine a logic value of flag data corresponding to the selected sensing node among the first and second flag data by using an amount of current flowing through the internal node.
Abstract:
A method of operating a semiconductor memory device includes performing a first program loop including a first program operation and a first verification operation in order to store a lower bit data of n-bit data in memory cells coupled to a page, performing a subprogram loop for memory cells of an erase state, having threshold voltages lower than a target voltage of a negative potential, so that the threshold voltages of the memory cells of the erase state become higher than the target voltage, and performing a second program loop including a second program operation and a second verification operation in order to store an upper bit data of the n-bit data in the memory cells.
Abstract:
Provided are a gas injection device and substrate processing apparatus using the same. The gas injection device includes a plurality of gas injection units disposed above a substrate support part rotatably disposed within a chamber to support a plurality of substrates, the plurality of gas injection units being disposed along a circumference direction with respect to a center point of the substrate support part to inject a process gas onto the substrates. Wherein each of the plurality of gas injection units includes a top plate in which an inlet configured to introduce the process gas is provided and an injection plate disposed under the top plate to define a gas diffusion space between the injection plate and the top plate along a radius direction of the substrate support part, the injection plate having a plurality of gas injection holes under the gas diffusion space to inject the process gas introduced through the inlet and diffused in the gas diffusion space onto the substrate. In at least one gas injection unit of the plurality of gas injection units, the process gas is introduced into the gas diffusion space at a plurality of points.
Abstract:
The present invention relates to an apparatus and method for forcibly shutting down a computer system, and more specifically, to an apparatus and method for forcibly shutting down a system when the system is determined to be in an abnormal state. An apparatus for forcibly shutting down a system according to a specific embodiment of the present invention comprises a reception unit 10 for receiving a power management control signal; a power state detection unit 20 for detecting a current power state of the system; a determination unit 30 for determining whether a system execution state is normal by comparing the power management control signal received by the reception unit 10 and a detection result of the power state detection unit 20; and a forced-shutdown unit 40 for forcibly shutting down the system when the system execution state is determined to be abnormal by the determination unit 30. According to the present invention so configured, there are advantages in that when an error occurs in a computer system and the system operation is inadvertently suspended while the system is not shut down, the system is forcibly shut down, whereby continuous consumption of battery power can be prevented, and danger of accident occurring due to an increase in battery temperature can be prevented.
Abstract:
The present invention relates to a washing device for a water treatment apparatus and a washing method thereof that can wash hard to reach areas with hands inside the water treatment apparatus. A washing device for a water treatment apparatus according to an aspect of the invention may include: circulation members connected to passages of the water treatment apparatus to circulate wash water through the passages of the water treatment apparatus; and a circulation module connected to the circulation members and circulating the wash water through the passages of the water treatment apparatus and the circulation members to thereby wash the passages of the water treatment apparatus. A washing method of a water treatment apparatus according to another aspect of the invention may include: a wash water inflow operation in which wash water flows into circulation members; and a circulation washing operation in which a circulation modulation is operated to circulate the wash water through passages of the wash treatment apparatus.
Abstract:
The present invention provides method and device for driving local dimming in a liquid crystal display device which enables adaptive application of a gradation roll-off according to an image characteristic. The method for driving local dimming in a liquid crystal display device includes the steps of determining a local dimming value of each light emitting block by analyzing a received image data light emitting block by light emitting block of a backlight unit, producing a pixel compensating coefficient on a light quantity change of each pixel by using the local dimming value of each light emitting block, producing a required gradient value by compensating the received image data by using the pixel compensating coefficient, and producing maximum required gradient values for one frame and an average value of the maximum required gradient values for one frame, determining a roll-off end point of a gradient roll-off section according to the maximum required gradient value, and determining a roll-off starting point of the gradient roll-off section according to the average of the maximum required gradient values, setting a gradient change curve of the gradient roll-off section by using the roll-off starting point and end point, and producing a gain value of each pixel from the gradient change curve, and forwarding an output gradient value by correcting the required gradient value by using the gain value of each pixel.