Abstract:
An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost. The wavelength selection unit preferably includes a prism having a front surface oriented at Brewster's angle and a back surface oriented to receive and reflect an ordinary refracted ray travelling within the prism at a right angle to the back surface. The back surface also preferably includes a highly reflective coating to serve as the highly reflective surface of the resonator. The wavelength selection unit preferably further comprises an adjustment component for adjusting the orientation of the prism and for enclosing the other end of the housing, opposite the outcoupling end.
Abstract:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a molecular fluorine component of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is provided at an initial partial pressure and is subject to depletion within the laser discharge chamber. Injections of gas including molecular fluorine are performed each to increase the partial pressure of molecular fluorine by a selected amount in the laser chamber preferably less than 0.2 mbar per injection, or 7% of an amount of F2 already within the laser chamber. A number of successive injections may be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the molecular fluorine in the discharge chamber. The driving voltage is preferably determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
Abstract:
A spectrometer based on a high-resolution confocal Fabry-Perot interferometer for detection of wavelength, FWHM and/or 95% bandwidth of a laser beam of a narrow band tunable excimer or molecular fluorine lithography laser, or EUV generating source, preferably includes a reduction telescope for reducing the laser beam, a diffusor to homogenize the incident excimer or molecular fluorine lithography laser beam, a housing for mounting the confocal Fabry-Perot interferometer between windows in a sealed and temperature-stabilized housing, imaging optics for bringing the incident beam to focus at approximately a center of the interferometer, interferometer fringe imaging optics, and a photoelectric detector of the interferometer fringe image.
Abstract:
An apparatus and method are provided for bandwidth narrowing of an excimer laser to nullnullnull6 pm or less with high spectral purity and minimized output power loss. Output stability with respect to pulse energy, beam pointing, beam size and beam output location is also provided. The excimer laser includes an active laser medium for generating a spectral beam at an original wavelength, means for selecting and narrowing the broadband output spectrum of the excimer laser, a resonator having at least one highly reflecting surface, and an output coupler. Means for adapting a divergence of the resonating band within the resonator is further included in the apparatus of the invention. The divergence adapting causes the spectral purity to improve by between 20% and 50% and the output power to reduce by less than 10%. A method according to the invention includes selecting and aligning the divergence adapting means.
Abstract:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
Abstract:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
Abstract:
An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost. The wavelength selection unit preferably includes a prism having a front surface oriented at Brewster's angle and a back surface oriented to receive and reflect an ordinary refracted ray travelling within the prism at a right angle to the back surface. The back surface also preferably includes a highly reflective coating to serve as the highly reflective surface of the resonator. The wavelength selection unit preferably further comprises an adjustment component for adjusting the orientation of the prism and for enclosing the other end of the housing, opposite the outcoupling end.
Abstract:
A device for use with a repetitively pulsed gas laser provides self-initiated UV preliminary ionization of the active volume of a laser, which has extended high-voltage and grounded electrodes disposed parallel to one another, to which peaking capacitors distributed along the length of the electrodes are connected in a low-inductance manner. The low-voltage contacts of the peaking capacitors are either connected directly to the grounded electrode or, if this connection is interrupted, dielectric plates are inserted that are disposed either on one side or on both sides of the grounded electrode. If the capacitors are charged rapidly, a surface discharge which effects UV pre-ionization of the volume of the main discharge and is uniformly distributed over the whole surface of the dielectric plates is produced on the surface of the dielectric plates. The device provides improved output parameters of the laser and increased service life both of the gas mixture and of structural components of the electric discharge system.
Abstract:
An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.
Abstract:
An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.