Abstract:
A tunable laser system includes a gain medium and an optical resonator for generating a laser beam, and a spectral narrowing and tuning unit within the resonator. A detection and control unit controls a relative wavelength of the laser system. A wavelength calibration module calibrates the detection and control unit. The module contains more than one species each having an optical transition line within the tuning spectrum of the laser. A beam portion of the narrowed emission from the laser is directed through the wavelength calibration module and a beam portion is directed through the detection and control unit when the laser beam is scanned through the optical transition line of each of the species within the module. The detection and control unit is monitored and calibrated during the scanning.
Abstract:
An excimer or molecular fluorine laser includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator including the discharge chamber and a pair of resonator reflectors for generating an output laser beam. One of the resonator reflectors is an output coupling interferometer including a pair of opposing reflecting surfaces tuned to produce a reflectivity maximum at a selected wavelength for narrowing a linewidth of the output laser beam. One of the pair of opposing reflecting surfaces is configured such that the opposing reflecting surfaces of the interferometer have a varying optical distance therebetween over an incident beam cross-section which serves to suppress outer portions of the reflectivity maximum to reduce spectral purity. Preferably, this surface is non-planar, and may include a step, a recess or a raised or recessed curved portion of a quarter wavelength in height or depth, respectively.
Abstract:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a molecular fluorine component of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is provided at an initial partial pressure and is subject to depletion within the laser discharge chamber. Injections of gas including molecular fluorine are performed each to increase the partial pressure of molecular fluorine by a selected amount in the laser chamber preferably less than 0.2 mbar per injection, or 7% of an amount of F2 already within the laser chamber. A number of successive injections may be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the molecular fluorine in the discharge chamber. The driving voltage is preferably determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
Abstract:
An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.
Abstract:
A line-narrowed excimer or molecular fluorine laser system includes a discharge chamber filled with a gas mixture at least including molecular fluorine and a buffer gas, multiple electrodes within the discharge chamber connected to a discharge circuit for energizing the gas mixture, a resonator including a pair of resonator reflecting surfaces disposed on either side of the discharge chamber for generating a laser beam, and a line-narrowing/selection unit within the resonator for narrowing the bandwidth of the laser beam. The resonator further includes a third reflecting surface which is deformable and disposed between the pair of resonator reflecting surfaces. The line-narrowing/selection unit preferably includes a beam expander and a dispersive element, wherein the deformable third reflecting surface is disposed between the beam expander and the dispersive element.
Abstract:
An efficient F2 laser is provided with improvements in line selection, monitoring capabilities, alignment stabilization, performance at high repetition rates and polarization characteristics. Line selection is preferably provided by a transmission grating or a grism. The grating or grism preferably outcouples the laser beam. The line selection may be fully provided at the front optics module. A monitor grating and an array detector monitor the intensity of the selected (and unselected) lines for line selection control. An energy detector is enclosed in an inert gas purged environment at slight overpressure. A blue or green reference beam is used for F2 laser beam alignment stabilization and/or spectral monitoring of the output laser beam. The blue or green reference beam advantageously is not reflected out with a atomic fluorine red emission of the laser and is easily resolved from the red emission. The clearing ratio of the laser gas flow through the discharge area is reduced by narrowing the discharge width using improved laser electrodes and/or by increasing the gas flow rate through the discharge while maintaining uniformity by using a more aerodynamic discharge chamber. The F2 laser beam is substantially polarized, e.g., 98% or better, using at least one intracavity polarization element preferably in combination with Brewster discharge chamber windows.
Abstract:
An excimer or molecular fluorine laser system a wavefront compensating optic within its resonator for adjusting the curvature of the wavefront of the beam for compensating wavefront distortions and thereby enhancing the spectral purity of the beam. The wavefront compensating optic may be a plate, such as a null lens. One or both surfaces of the null lens may be adjustable and/or have an adjustable curvature for controlling the wavefront distortion compensation. A multi-compartment enclosure may be included having at least one optical component of the line-narrowing unit within each compartment. An atmosphere within at least one compartment is preferably controlled for controlling the spectral purity of the beam by controlling an amount of wavefront distortion compensation. The wavefront compensating optic may be sealably disposed between adjacent compartments.
Abstract:
An excimer or molecular fluorine laser system is provided which emits a laser beam during operation and has a gas mixture with a gas composition initially provided within a discharge chamber. The laser system includes a discharge chamber containing a laser gas mixture at least including a halogen-containing species and a buffer gas, multiple electrodes within the discharge chamber and connected to a discharge circuit for energizing the gas mixture, a resonator for generating a laser beam, an electrostatic precipitator for having a voltage applied thereto and for receiving and precipitating contaminant particulates from a flow of the gas mixture, and a processor for monitoring the corona discharge ignition voltage of the electrostatic precipitator and for determining a status of said gas mixture based on the monitored voltage.
Abstract:
A F2-laser includes a discharge chamber filled with a gas mixture including molecular fluorine for generating a spectral emission in a wavelength range between 157 nm and 158 nm including a primary line and a secondary line, multiple electrodes coupled with a power supply circuit for producing a pulsed discharge to energize the molecular fluorine, a resonator including the discharge chamber and an interferometric device for generating a laser beam having a bandwidth of less than 1 pm, and a wavelength monitor coupled in a feedback loop with a processor for monitoring a spectral distribution of the laser beam. The processor controls an interferometric spectrum of the interferometric device based on the monitored spectral distribution such that sidebands within the spectral distribution are substantially minimized.