摘要:
Provided are an active resistance-capacitance (RC) integrator and a continuous-time sigma-delta modulator, which have a gain control function. The active RC integrator includes an amplifier, a first base resistor connected between a first input node and a positive input port of the amplifier, a second base resistor connected between a second input node and a negative input port of the amplifier, a first resistor unit connected between the second input node and the positive input port of the amplifier, and a second resistor unit connected between the first input node and the negative input port of the amplifier. A resistor network including resistors and switches is configured to vary an input resistance, so that an active RC integrator may have a gain control function.
摘要:
Provided are a gain control device and an amplifier using the gain control device. The gain control device includes a first input resistance unit having a first variable resistor whose resistance is linearly variable and a first fixed resistor respectively receiving a first input signal and a second input signal having a sign different from the first input signal and outputting current through a first output terminal, and a second input resistance unit having a second fixed resistor and a second variable resistor whose resistance is linearly variable respectively receiving the first input signal and the second input signal and outputting current through a second output terminal.Since the gain control device can separately perform dB-linear gain control, it is easily combined with a circuit, such as a continuous-time sigma-delta modulator (SDM), a continuous-time filter, and a continuous-time analog-to-digital converter (ADC), and enables miniaturization and low power consumption.
摘要:
Provided are a dynamic element-matching method, a multi-bit Digital-to-Analog Converter (DAC), and a delta-sigma modulator with the multi-bit DAC and delta-sigma DAC with the multi-bit DAC. The dynamic element-matching method relates to preventing periodic signal components (in-band tones) from being generated from a delta-sigma modulator of a delta-sigma Analog-to-Digital Converter (ADC) and a multi-bit DAC used in a delta-sigma DAC. Unit elements are selected in a new sequence according to a simple algorithm every time that each of unit elements is selected once, and thus the unit elements are not periodically used. Consequently, it is possible to prevent in-band tones caused by a conventional Data Weighted Averaging (DWA) algorithm.
摘要:
Provided are an image sensor and a driving circuit of a transfer transistor for charge transfer in a light receiving unit realized in the image sensor, in which a pixel is insufficiently reset to be always operated in a pseudo pinch-off condition, unlike a conventional reset method in which a pixel structure of a 4-transistor CMOS image sensor or its analogue has to be depleted, thereby reducing a reset voltage of a photodiode and reducing a dark current and fixed pattern noise generated due to discordance of characteristics between pixels.The image sensor includes a conversion module for lowering a turn-on voltage of a signal or changing its waveform, a module for providing a negative voltage if necessary, and at least one module for limiting the slope of an output signal, and the characteristics of the image sensor are improved by operating the transfer transistor in the pseudo pinch-off mode.
摘要:
Provided is a digital-to-analog converter converting a digital signal into an analog signal. The digital-to-analog converter includes a decoder for selecting a current source from digital inputs, a current switch driver for driving a current switch of the current source, and a random selection switch disposed between the decoder and the current switch driver, and randomly resetting a connection relationship between outputs of the decoder and inputs of the current switch driver every clock. According to the present invention, the linearity of the digital-to-analog converter may be enhanced by changing the current source selected every clock signal to compensate for non-linearity of the digital-to-analog converter according to the spatial arrangement of the current sources.
摘要:
There is provided a quadrature modulation transmitter which is capable of solving several problems of the conventional transmitter while performing the same function as the heterodyne transmitter or the digital IF transmitter, in which a circuit structure is simplified and a power consumption is reduced compared with the conventional transmitter. The quadrature modulation transmitter includes: a digital processing block for receiving an I-channel data, a Q-channel data and a clock signal, modulating the I-channel data or an inverted I-channel data into a first analog signal by means of an I-channel DAC according to a switching of an I-clock signal identical to the clock signal, and modulating the Q-channel data and an inverted Q-channel data into a second analog signal by means of a Q-channel DAC according to a switching of a Q-clock signal, the Q-clock signal being an inverted clock signal; and an analog processing block for receiving the first and second analog signals from the digital processing block, adding the first and second analog signals, converting the added signal into an RF domain signal through a mixing operation, and amplifying and transmitting the RF domain signal.
摘要:
Provided is a voltage supply circuit using a charge pump. The voltage supply circuit enhances charge pump output voltage fluctuation characteristics depending on load variation of a charge pump voltage generator (load regulation characteristics) when receiving an operation power supply voltage of the charge pump through a regulator. The voltage supply circuit is configured to feed back fluctuation of a charge pump output voltage to a charge pump voltage regulator. The fluctuation of the charge pump output voltage is compensated through fluctuation of an output voltage of the charge pump to active enhance the load regulation characteristics.
摘要:
Provided are a current switch driving circuit generating a signal for driving a current switch, and a digital-to-analog converter using the same. The current switch driving circuit includes a first PMOS transistor in which a source terminal is connected to a power supply terminal, a gate terminal receives an input signal, and a drain terminal outputs a driving signal, an NMOS transistor in which a drain terminal is connected to the drain terminal of the first PMOS transistor, and a gate terminal receives the input signal, a second PMOS transistor in which a source terminal is connected to a source terminal of the NMOS transistor, a gate terminal is connected to a bias voltage terminal, and a drain terminal is connected to a ground terminal, and a control current source allowing the second PMOS transistor to be maintained constantly in an ON state.
摘要:
Provided are an active resistance-capacitance (RC) integrator and a continuous-time sigma-delta modulator, which have a gain control function. The active RC integrator includes an amplifier, a first base resistor connected between a first input node and a positive input port of the amplifier, a second base resistor connected between a second input node and a negative input port of the amplifier, a first resistor unit connected between the second input node and the positive input port of the amplifier, and a second resistor unit connected between the first input node and the negative input port of the amplifier. A resistor network including resistors and switches is configured to vary an input resistance, so that an active RC integrator may have a gain control function.
摘要:
Provided is a clock timing adjustment device for adjusting a time difference of clocks and a delta-sigma modulator. The clock timing adjustment device includes a power detection unit and a timing adjustment unit. The power detection unit receives input signals which are generated using pairs of first and second clocks having a plurality of clock time differences and respectively correspond to the clock time differences, detects powers of the input signals, and outputs a control signal corresponding to a clock time difference where the power is minimized. The timing adjustment unit receives a reference clock and the control signal and outputs the first and second clocks having the clock time difference where the power is minimized from the reference clock according to the control signal.