Abstract:
An arrangement for enabling local control of power delivery within a plasma processing system having a plasma processing chamber during processing of a substrate is provided. The arrangement includes a dielectric window and an inductive arrangement. The inductive arrangement is disposed above the dielectric window to enable power to couple with a plasma in the plasma processing system. The inductive arrangement includes a set of inductive elements, which provides the local control of power delivery to create a substantially uniform plasma in the plasma processing chamber.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base has a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over the temperature-controlled base. The flat-support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
A method of component management in a substrate processing system is disclosed. The substrate processing system has a set of components, at least a plurality of components of the set of components being designated to be smart components, each component of the plurality of components having an intelligent component enhancement (ICE). The method includes querying the plurality of components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the plurality of components if any of the plurality of components responds to the querying. The method additionally includes flagging the first component for corrective action if a first component of the plurality of components fails to provide first component unique identification data when the first component identification data is expected.
Abstract:
A method of component management in a substrate processing system is disclosed. The substrate processing system has a set of components, at least a plurality of components of the set of components being designated to be smart components, each component of the plurality of components having an intelligent component enhancement (ICE). The method includes querying the plurality of components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the plurality of components if any of the plurality of components responds to the querying. The method additionally includes flagging the first component for corrective action if a first component of the plurality of components fails to provide first component unique identification data when the first component identification data is expected.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base has a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
An r.f. excited vacuum plasma processor has a workpiece held in place by a monopolar or bipolar electrostatic chuck having an electrode that develops peak r.f. voltages over a wide amplitude range. A chuck DC power supply source is connected to the chuck. An r.f. peak detecting circuit coupled with the electrode is part of a circuit for controlling the DC voltage applied by the chuck power supply to the chuck. The control circuit supplies an unamplified replica of a DC voltage derived by the peak detecting circuit to the chuck DC power supply source via a DC circuit including only passive elements so the level of the DC voltage applied to the chuck varies in response to variations in the peak amplitude of the r.f. voltage. The peak detector includes at least several series connected diodes having electrodes polarized in the same direction or two stacks of series connected diodes. In one of the stacks, the diode electrodes are polarized in one direction and in the other stack the diode electrodes are polarized in the other direction. The diodes of the peak detecting circuit are arranged so the DC bias voltage supplied to the chuck and the peak value of the r.f. voltage developed at the electrode have the same order of magnitude.
Abstract:
A tunable multi-zone injection system for a plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas at adjustable flow rates to multiple zones of the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The injector can include an on-axis outlet supplying process gas at a first flow rate to a central zone and off-axis outlets supplying the same process gas at a second flow rate to an annular zone surrounding the central zone. The arrangement permits modification of gas delivery to meet the needs of a particular processing regime by allowing independent adjustment of the gas flow to multiple zones in the chamber. In addition, compared to consumable showerhead arrangements, a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A method of operating a heating plate for a substrate support assembly used to support a semiconductor substrate in a semiconductor processing apparatus, wherein the heating plate comprises power supply lines and power return lines and respective heater zone connected between every pair of power supply line and power return line. The method reduces maximum currents carried by the power supply lines and power return lines by temporally spreading current pulses for powering the heater zones.
Abstract:
A method for providing steerability in a plasma processing environment during substrate processing is provided. The method includes managing power distribution by controlling power being delivered into the plasma processing environment through an array of electrical elements. The method also includes directing gas flow during substrate processing by controlling the amount of gas flowing through an array of gas injectors into the plasma processing environment, wherein individual ones of the array of gas injectors are interspersed between the array of electrical elements. The method further includes controlling gas exhausting during substrate processing by managing amount of gas exhaust being removed by an array of pumps, wherein the array of electrical elements, the array of gas injectors, and the array of pumps are arranged to create a plurality of plasma regions, each plasma region being substantially similar, thereby creating a uniform plasma region across the substrate.
Abstract:
A method of operating a heating plate for a substrate support assembly used to support a semiconductor substrate in a semiconductor processing apparatus, wherein the heating plate comprises power supply lines and power return lines and respective heater zone connected between every pair of power supply line and power return line. The method reduces maximum currents carried by the power supply lines and power return lines by temporally spreading current pulses for powering the heater zones.