Abstract:
A data sampler and a photo detecting apparatus compensate a reference signal with offset information measured from a unit pixel, and compare an offset-compensated reference signal with a data signal, thereby minimizing the impact of an offset occurring with an increase of gain in the data sampler.
Abstract:
Provided are a semiconductor device including a high voltage transistor and a low voltage transistor and a method of manufacturing the same. The semiconductor device includes a semiconductor substrate including a high voltage region and a low voltage region; a high voltage transistor formed in the high voltage region and including a first active region, a first source/drain region, a first gate insulating layer, and a first gate electrode; and a low voltage transistor formed in the low voltage region and including a second active region, a second source/drain region, a second gate insulating layer, and a second gate electrode. The second source/drain region has a smaller thickness than a thickness of the first source/drain region.
Abstract:
An analog-to-digital converter (ADC) within an image sensor includes a comparator comparing a ramp signal with an image signal, and a counter generating a count result in response to the comparison by counting a clock during a counting interval. The ADC determines whether a first counting interval for the counter is less than a reference interval, and if the first counting interval is less than the reference interval the counting interval is a first counting interval, else the counting interval is a second counting interval.
Abstract:
A correlated double sampling circuit includes a delta-sigma modulator, a selection circuit, and an accumulation circuit. The delta-sigma modulator is configured to receive an input signal, delta-sigma modulate the input signal, and output a modulation signal. The selection circuit is configured to invert the modulation signal and selectively output one of the modulation signal and an inverted modulation signal in response to a selection signal corresponding to an operation phase. The accumulation circuit is configured to generate a first accumulation result by performing an accumulation process on one of the modulation signal and the inverted modulation signal in a first operation phase, and generate a second accumulation result by performing the accumulation process on the first accumulation result and the other one of the modulation signal and the inverted modulation signal in a second operation phase.
Abstract:
A method for operating an image capture device having a sensor with an array of first and second pixels includes capturing an image a plurality of times with the second pixels to produce a corresponding second image signal, the second pixels being white pixels, capturing the image a single time with the first pixels to produce a corresponding first image signal, inputting selecting signals to the sensor via a row driver to obtain the first and second image signals from the first and second pixels, respectively, and converting the first and second image signals to respective digital values via an analog-to-digital converter.
Abstract:
A digital double sampling method, a related complementary metal oxide semiconductor (CMOS) image sensor, and a digital camera comprising the CMOS image sensor are disclosed. The method includes generating first digital data corresponding to an initial voltage level apparent in a pixel in response to a reset signal, inverting the first digital data, outputting a detection voltage corresponding to image data received from outside of the CMOS image sensor, and counting in synchronization with a clock signal, starting from an initial value equal to the inverted first digital data, and for an amount of time responsive to a voltage level of the detection voltage.
Abstract:
Example embodiments are directed to an analog-to-digital converter (ADC) that controls a gain by changing a system parameter, an image sensor including the ADC and a method of operating the ADC. The ADC includes a sigma-delta modulator which receives an input signal and a clock signal and sigma-delta modulates the input signal into a digital output signal based on the clock signal and an accumulation unit which accumulates the digital output signal at each cycle of the clock signal according to an analog-to-digital conversion time and outputs an accumulation result. A system parameter is varied during the analog-to-digital conversion time to control a gain of the ADC. The method of operating the analog-to-digital converter includes sigma-delta modulating an input signal into a digital output signal in response to a clock signal input to the ADC; and accumulating the digital output signal at each cycle of the input clock signal according to an analog-to-digital conversion time and outputting an accumulation result.
Abstract:
A correlated double sampling (CDS) circuit is provided. The CDS circuit is configured to perform a CDS on a reset signal and an image signal during a CDS phase respectively. The CDS circuit includes a sampling circuit configured to output a difference between a correlated double sampled reset signal and a correlated double sampled image signal, and a feedback unit configured to feedback the difference output from the sampling circuit during a PGA phase to an input of the sampling circuit.
Abstract:
An analog-digital converter (ADC) includes a correlated double sampling (CDS) circuit configured to perform CDS on each of a reset signal and an image signal output from a pixel to generate a correlated double sampled reset signal and a correlated double sampled image signal, respectively. A delta sigma (ΔΣ) ADC, also included in the ADC, is configured to output a difference between a first digital code that is generated by performing ΔΣ analog-digital conversion on the correlated double sampled reset signal and a second digital code that is generated by performing ΔΣ analog-digital conversion on the correlated double sampled image signal.
Abstract:
A sigma-delta analog-to-digital converter may include a sigma-delta modulator and a decimation filter. The sigma-delta modulator may convert a first analog input signal into a first bit stream having a first pattern using sigma-delta modulation and convert a second analog input signal into a second bit stream having a second pattern using the sigma-delta modulation. The decimation filter may integrate the number of bits having a particular value in the first bit stream, output a first digital value, calculate a bitwise complement value of the first digital value, integrate the number of bits having the particular value in the second bit stream with the bitwise complement value of the first digital value as an initial value of a second digital value, and output the second digital value.