摘要:
Disclosed is a method and structure for protecting circuit components from the ambient and in particular for protecting the contact metal from the adverse effects of moisture. A first layer of amorphous silicon is deposited over the circuit including the metal contacts. A second layer which may be silicon nitride or silicon dioxide is then deposited over the amorphous silicon. The amorphous silicon layer reduces cracking in the second layer and prevents cracks in the second layer from propagating to the circuit components.
摘要:
Semiconductor devices employing siloxane epoxy polymers as low-κ dielectric films are disclosed. The devices include a semiconductor substrate, one or more metal layers or structures and one or more dielectric films, wherein at least one dielectric film in the devices is a siloxane epoxy polymer. Use of siloxane epoxy polymers is advantageous, in part, because the polymers adhere well to metals and have dielectric constants as low as 1.8. Thus, the disclosed semiconductor devices offer much better performance than devices fabricated using conventional dielectric materials. Furthermore, the siloxane epoxy polymer dielectrics are fully curable at low temperatures, exhibit low leakage currents, and remain stable at temperatures greater than 400° C. making them particularly attractive for use in the semiconductor industry
摘要:
A metallized structure for use in a microelectronic circuit is set forth. The metallized structure comprises a dielectric layer, an ultra-thin film bonding layer disposed exterior to the dielectric layer, and a low-Me concentration, copper-Me alloy layer disposed exterior to the ultra-thin film bonding layer. The Me is a metal other than copper and, preferably, is zinc. The concentration of the Me is less than about 5 atomic percent, preferably less than about 2 atomic percent, and even more preferably, less than about 1 atomic percent. In a preferred embodiment of the metallized structure, the dielectric layer, ultra-thin film bonding layer and the copper-Me alloy layer are all disposed immediately adjacent one another. If desired, a primary conductor, such as a film of copper, may be formed exterior to the foregoing layer sequence. The present invention also contemplates methods for forming the foregoing structure as well as electroplating baths that may be used to deposit the copper-Me alloy layer.
摘要:
A system for performing chemical mechanical planarization for a semiconductor wafer includes a chemical mechanical polishing system including a chemical mechanical polishing slurry. The system also includes a device for measuring the electrochemical potential of the slurry during processing which is electrically connected to the slurry, and a device for detecting the end point of the process, based upon the electrochemical potential of the slurry, which is responsive to the electrochemical potential measuring device. Accurate in situ control of a chemical mechanical polishing process is thereby provided.
摘要:
It has been found that stress in X-ray transparent films used to form masks for X-ray lithography also cause distortions of the film and of the high-resolution X-ray-absorptive pattern formed thereon. A method is disclosed which anneals boron nitride films for use in X-ray masks in such a way as to control stress.
摘要:
Many of the stacking faults which occur after oxidation of silicon wafers are substantially eliminated by the use of an argon-hydrochloric anneal of the wafers just prior to oxidation. This anneal, which is carried out in the same chamber in which oxidation is carried out, removes impurities from the surface of the wafers and thereby limits the sites at which stacking faults form after oxidation.
摘要:
Structures employing siloxane epoxy polymers as diffusion barriers adjacent conductive metal layers are disclosed. The siloxane epoxy polymers exhibit excellent adhesion to conductive metals, such as copper, and provide an increase in the electromigration lifetime of metal lines. In addition, the siloxane epoxy polymers have dielectric constants less then 3, and thus, provide improved performance over conventional diffusion barriers.
摘要:
The compounds TiSi.sub.2 and TaSi.sub.2 have been found to be suitable substitutes for polysilicon layers in semiconductor integrated circuits. Suitable conducting properties of the compounds are ensured by providing a relatively thin substrate of polysilicon.