Abstract:
A higher packing of cells in a memory circuit includes a plurality of word line drivers employing a plurality of word lines, a plurality of bit lines, and various decoders. Disclosed is the array method of the word line drivers, which can reduce the pitch between the word line drivers so that the layout of the semiconductor memory array may be easily accomplished. Moreover, the array method of other components of the memory array is suggested.
Abstract:
In a method of inputting/outputting data in a semiconductor memory device, first data and second data are buffered and outputted to a first output node and a second output node, respectively, in a normal mode. In a test mode, the first data is buffered through a first transmission line and a second transmission line and outputted to the first output node and the second output node in response to at least one control signal. Also, in the test mode, the second data is buffered through the first transmission line and the second transmission line and outputted to the first output node and the second output node in response to the at least one control signal. Accordingly, test time may be reduced, and variations of operation characteristics caused by merging the data pins may also be reduced.
Abstract:
A semiconductor memory device stably operates over a wide range of the power supply voltage by including a power supply voltage level detector for generating detecting signals according to predetermined levels of the power supply voltage and an oscillator for generating a frequency-controlled oscillation pulse whose frequency is changeable according to the detecting signals. Thus, a boosting ratio of a boosting circuit, the refresh period of a refresh circuit and the substrate voltage of a substrate voltage generator can be adaptively changeable according to the variation of the power supply voltage.
Abstract:
Disclosed is a layout method for increasing pitches between bit lines and between sense amplifiers so as to easily accomplish fabrication of a semiconductor memory device and a semiconductor memory array capable of reducing the number of sense amplifiers. The semiconductor memory array includes a plurality of bit lines, and a plurality of sense amplifiers, each sense amplifier being connected to each pair of the bit lines, wherein the sense amplifiers placed in each column make up each group, with odd pairs of the bit lines being connected to even or odd sense amplifier groups, and even pairs of the bit lines being connected to even or odd sense amplifier groups.
Abstract:
A flash writing circuit for testing of dynamic random access memory (DRAM) devices comprises a generally conventional DRAM device and includes additional elements for writing identical data in each memory cell via bit lines connected to the memory cells but without the use of the conventional I/O lines normally used to write data into the memory cells.
Abstract:
A circuit for testing a semiconductor memory device comprises a latency controller for controlling the latency of the external clock signal, an internal column address generator for generating a column address signal in the memory device, and a mode register for generating a mode signal. The circuit for testing semiconductor memory devices also includes a column address decoder for decoding the output address signal of the internal column address generator, a memory cell for reading or writing data, an input/output control unit for controlling the data input/output of the memory cell according to the output signal of the latency controller, a data input buffer, and a data output buffer. Further provided are a frequency multiplier for generating an internal clock signal having a frequency "n" times the frequency of the external clock signal. By providing the above-mentioned improvements, the conventional test equipment can be used to test high frequency memory devices.
Abstract:
A burn-in test circuit of a semiconductor memory device with a first test circuit having output terminals connected to input terminals of a first half of plurality of word line drivers. A second test circuit has output terminals connected to input terminals of a second half of the plurality of word line drivers. The first and second tests circuits are sequentially activated to perform a burn-in test for all the memory cells.
Abstract:
The time required for testing high-density semiconductor memory devices is reduced by circuits and methodology for rapidly writing test data bits into the memory array. A common word line enable signal is arranged to turn on all of the word lines in the array simultaneously. Test data bits are applied to the array by gating them onto the I/O lines so that separate test bit lines are not required. A fast test enable signal gates the test bits onto the I/O lines in all columns of the array simultaneously, so that all of the memory cells receive test bits at one time. The new circuitry has the further advantages of reduced area and capacitance, the latter further contributing to reducing the test data write time.
Abstract:
In a method of inputting/outputting data in a semiconductor memory device, first data and second data are buffered and outputted to a first output node and a second output node, respectively, in a normal mode. In a test mode, the first data is buffered through a first transmission line and a second transmission line and outputted to the first output node and the second output node in response to at least one control signal. Also, in the test mode, the second data is buffered through the first transmission line and the second transmission line and outputted to the first output node and the second output node in response to the at least one control signal. Accordingly, test time may be reduced, and variations of operation characteristics caused by merging the data pins may also be reduced.
Abstract:
A wafer burn-in test circuit of a semiconductor memory device having a plurality of memory cells arranged in a row/column matrix, is provided, including: a sub word line driver connected to first and second word line groups each connected to true cells and complement cells forming the memory cells, and responding to a predecoded low address; and first and second power lines respectively supplying power to the corresponding first and second power line groups by a switching operation of the sub word line driver, wherein a ground power source is applied to the first and second power lines during a normal operation, and the ground power source and a step-up power source are alternately applied to the first and second power lines during a wafer burn-in test operation.