Abstract:
A semiconductor device capable of suppressing void migration is provided. The semiconductor device includes a dummy region extending in a first direction substantially perpendicular to a second direction in which a word line extends. In addition, an isolation layer pattern may not cut the dummy region in the second direction. Consequently, leaning of the dummy region and void migration are prevented. A method of fabricating the semiconductor device is also provided.
Abstract:
A device includes a semiconductor substrate and a gate insulation film lining a trench in an active region of the substrate. A gate electrode pattern is recessed in the trench on the gate insulation film and has an upper surface that has a nonuniform height. A dielectric pattern may be disposed on the gate electrode pattern in the trench.
Abstract:
A transistor and method of fabricating the transistor are disclosed. The transistor is disposed in an active region of a substrate defined by an isolation region and includes a gate electrode and associated source/drain regions. The isolation region includes an upper isolation region and an lower isolation region, wherein the upper isolation region is formed with sidewalls having, at least in part, a positive profile.
Abstract:
A semiconductor device capable of suppressing void migration is provided. The semiconductor device includes a dummy region extending in a first direction substantially perpendicular to a second direction in which a word line extends. In addition, an isolation layer pattern may not cut the dummy region in the second direction. Consequently, leaning of the dummy region and void migration are prevented. A method of fabricating the semiconductor device is also provided.
Abstract:
A transmission/reception concurrent matching apparatus for a multiple of TDM channels and a method thereof, wherein in matching the TDM channels, upon data transmission, a signal Serial Communication Controller(SCC) stores data to transmit per each data channel into a multiple of First-in First-out buffers(FIFOs) and transmits in order the data from each FIFO by one byte through a TDM bus, and upon data reception, stores the received data through the TDM bus into each FIFO and processes the data from each FIFO by reading out the data in order. As the number of SCC is reduced, the cost to process the data is saved.
Abstract:
In a semiconductor device having a recessed gate electrode and a method of fabricating the same, a channel trench is formed in a semiconductor substrate by etching the semiconductor substrate. A first semiconductor layer is formed on the semiconductor substrate that fills the channel trench. A second semiconductor layer is formed on the first semiconductor layer, the second semiconductor layer having a lower impurity concentration than the first semiconductor layer.
Abstract:
A transistor and method of fabricating the transistor are disclosed. The transistor is disposed in an active region of a substrate defined by an isolation region and includes a gate electrode and associated source/drain regions. The isolation region includes an upper isolation region and an lower isolation region, wherein the upper isolation region is formed with sidewalls having, at least in part, a positive profile.
Abstract:
Example embodiments relate to a method of forming a recess and a method of manufacturing a semiconductor device having the same. The method includes forming a field region defining an active region in a substrate. The active region extends in a first direction in the substrate. The method further includes forming a preliminary recess extending in a second direction different from the first direction and crossing the active region in the substrate, plasma-oxidizing the substrate to form a sacrificial oxide layer along a surface of the substrate having the preliminary recess, and removing portions of the sacrificial oxide layer and the active region by plasma etching to form a recess having a width larger than a width of the preliminary recess, where an etch rate of the active region is one to two times greater than an etch rate of the sacrificial oxide layer.
Abstract:
In a semiconductor device and a method of manufacturing the same, a substrate is defined into active and non-active regions by a device isolation layer and a recessed portion is formed on the active region. A gate electrode includes a gate insulation layer on an inner sidewall and a bottom of the recessed portion, a lower electrode on the gate insulation layer and an inner spacer on the lower electrode in the recessed portion, and an upper electrode that is positioned on the inner spacer and connected to the lower electrode. Source and drain impurity regions are formed at surface portions of the active region of the substrate adjacent to the upper electrode. Accordingly, the source and drain impurity regions are electrically insulated by the inner spacer in the recessed portion of the substrate like a bridge, to thereby sufficiently prevent gate-induced drain leakage (GIDL) at the gate electrode.
Abstract:
In one embodiment, a semiconductor device has an active region defined by an isolation layer formed inside an STI trench that includes an upper trench and a lower trench having a substantially curved cross-sectional profile under the upper trench so that the lower trench is in communication with the upper trench. Since the upper trench has a sidewall tapered with a positive slope, a good gap filling property can be obtained when filling the upper trench with an insulating layer. By forming a void in the lower trench, a dielectric constant at the bottom of the isolation layer is lower than a dielectric constant at an oxide layer, thereby improving the isolation property. The isolation layer includes a first insulating layer formed inside only the upper trench and covering an inner wall of the upper trench in the form of a spacer.