Abstract:
A method for manufacturing micro electro-mechanical systems includes forming an insulation layer on an upper surface of a semiconductor substrate, forming a structure layer on an upper surface of the insulation layer and etching the structure layer, forming an under bump metal on a predetermined position of an upper surface of the structure layer, forming a via hole in a glass substrate corresponding to the position of the under bump metal and in a shape such that the via hole is larger in diameter at an upper surface of the glass substrate than at a lower surface of the glass substrate, wherein the glass substrate is bonded to the upper surface of the structure layer and creates a vacuum chamber that protects a structure of the structure layer, and arranging a solder ball in the via hole and bonding the solder ball to the under bump metal.
Abstract:
A nano imprint master and a method of manufacturing the same are provided. The method includes: implanting conductive metal ions into a substrate including quartz to form a conductive layer inside the quartz substrate; coating a resist on the quartz substrate in which the conductive layer is formed, to form a resist coating layer; exposing the resist coating layer to an electron beam to form micropatterns; etching the quartz substrate by using the resist coating layer, in which the micropatterns are formed, as a mask; and removing the resist coating layer to obtain a master in which micropatterns are formed.
Abstract:
A ferroelectric hard disk device is provided and includes: a ferroelectric media having a bottom electrode and a ferroelectric layer disposed on the bottom electrode; and a head formed above the ferroelectric media, the head being operative to write and reproduce information on the ferroelectric layer.
Abstract:
Provided is an information storage medium using nanocrystal particles, a method of manufacturing the information storage medium, and an information storage apparatus including the information storage medium. The information storage medium includes a conductive layer, a first insulating layer formed on the conductive layer, a nanocrystal layer that is formed on the first insulating layer and includes conductive nanocrystal particles that can trap charges, and a second insulating layer formed on the nanocrystal layer.
Abstract:
A process and an apparatus for performing a UV nano-imprint lithography are provided. The process uses a polymer pad which allows a uniform application of pressure to a patterned template and an easy removal of a residual resin layer. The apparatus includes a tilt and decentering corrector which allows an accurate alignment of layers during the nano-imprint lithography process.
Abstract:
An information storage device using movement of magnetic domain walls includes a writing magnetic layer having a magnetic domain wall. A stack structure is formed on the writing magnetic layer. The stack structure includes a connecting magnetic layer and an information storing magnetic layer stacked sequentially. The information storage device also includes a reader for reading information stored in the information storing magnetic layer.
Abstract:
Provided are an information storage device using movement of a magnetic domain wall, and methods of manufacturing and operating the information storage device. The information storage device includes a storage track having magnetic domains and a writer for recording data to the storage track, wherein the writer comprises: a first magnetic layer and a second magnetic layer that is formed to cover a portion of the first magnetic layer and has a smaller magnetic anisotropic energy than the first magnetic layer.
Abstract:
A RF system which includes a silicon substrate formed with at least one via-hole filled with conductive material so that both sides of the silicon substrate are electrically connected with one another; at least one flat device formed on one side of the silicon substrate; and at least one RF MEMS device formed on the other side of the silicon substrate.
Abstract:
Example embodiments may provide data storage devices using movement of a magnetic domain wall and/or a method of operating magnetic domain data storage devices. The data storage device may include a first magnetic layer for writing data having two magnetic domains magnetized in different directions, a second magnetic layer for storing data at a side of the first magnetic layer, a data recording device connected to the first magnetic layer and the second magnetic layer, and a plurality of reading heads configured to read the second magnetic layer. The data storage device may store a larger amount of data without requiring moving mechanical systems.
Abstract:
Provided is a dual-side imprinting lithography system that includes a medium supporting unit that supports a medium wherein both surfaces of the medium are coated with a ultraviolet (UV) hardening resin; a first mold supporting unit and a second mold supporting unit that respectively support a first mold and a second mold, disposed respectively above the medium supporting unit and under the medium supporting unit; a vertical moving device that moves vertically at least one of the medium supporting unit, the first mold supporting unit, and the second mold supporting unit; a first UV radiating device that is installed above the first mold supporting unit to radiate UV rays; and a second UV radiating device that is installed under the second mold supporting unit to radiate UV rays.