Abstract:
A fan-out unit which can control a resistance difference among channels with efficient space utilization and a thin-film transistor (TFT) array substrate having the fan-out unit are presented. The fan-out unit includes: an insulating substrate; a first wiring layer which is formed on the insulating substrate and connected to a pad; a second wiring layer which is formed on the insulating substrate and connected to a TFT; and a resistance controller which is connected between the first wiring layer and the second wiring layer and includes a plurality of first resistors extending parallel to the first wiring layer and a plurality of second resistors extending perpendicular to the first resistors and alternately connecting to the first resistors, wherein the first resistors are longer than the second resistors.
Abstract:
A thin-film transistor (TFT) includes a gate electrode, a semiconductor pattern, a source electrode, and a drain electrode. The semiconductor pattern includes an active layer being overlapped with the gate electrode and a low band gap portion having a lower energy band gap than the active layer. The source and drain electrodes are spaced apart from each other to be overlapped with the semiconductor pattern. Therefore, the semiconductor pattern includes a low band gap portion having a lower energy band gap than the active layer, so that electron mobility may be increased in a channel formed along the low band gap portion so that electric characteristics of the TFT may be enhanced.
Abstract:
A display device includes a lower panel including a lower substrate and a pixel transistor formed on the lower substrate; and an upper panel facing the lower panel, and including an upper substrate, a sensing transistor formed on the upper substrate, and a readout transistor connected to the sensing transistor and transmitting a signal. The readout transistor includes a first lower gate electrode formed on the upper substrate, a first semiconductor layer formed on the first lower gate electrode and overlaps the first gate electrode, and a first source electrode and a first drain electrode disposed on the first semiconductor layer. The sensing transistor includes a light blocking film disposed on the upper substrate, a second lower gate electrode contacting the light blocking film on the light blocking film, a second semiconductor layer overlapping the light blocking film on the second lower gate electrode, a second source electrode and a second drain electrode formed on the second semiconductor layer, and a second upper gate electrode overlapping the second semiconductor layer on the second source electrode and the second drain electrode.
Abstract:
Provided are a sensor array substrate and a method of fabricating the same. The sensor array substrate includes: a substrate in which a switching element region and a sensor region that senses light are defined; a first semiconductor layer which is formed in the sensor region; a first gate electrode which is formed on the first semiconductor layer and overlaps the first semiconductor layer; a second gate electrode which is formed in the switching element region; a second semiconductor layer which is formed on the second gate electrode and overlaps the second gate electrode; and a light-blocking pattern which is formed on the second semiconductor layer and overlaps the second semiconductor layer, wherein the first semiconductor layer and the second semiconductor layer are disposed on different layers, and the second gate electrode and the light-blocking pattern are electrically connected to each other.
Abstract:
Provided are a thin-film transistor (TFT) display panel having improved electrical properties that can be fabricated time-effectively and a method of fabricating the TFT display panel. The TFT display panel includes: gate wirings which are formed on an insulating substrate; oxide active layer patterns which are formed on the gate wirings; data wirings which are formed on the oxide active layer patterns to cross the gate wirings; a passivation layer which is formed on the oxide active layer patterns and the data wirings and is made of silicon nitride (SiNx); and a pixel electrode which is formed on the passivation layer.
Abstract:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
Abstract:
The present invention discloses a thin film transistor (TFT), a method for manufacturing the TFT, and a display substrate using the TFT that may prevent degradation of the characteristics of an oxide semiconductor contained in the TFT by blocking external light from entering a channel region of the oxide semiconductor. The TFT comprises an oxide semiconductor layer; a protective layer disposed on the oxide semiconductor layer and overlapping a channel region of the oxide semiconductor layer; an opaque layer disposed between the oxide semiconductor layer and the protective layer; a source electrode contacting a first side of the oxide semiconductor layer; a drain electrode contacting a second side of the oxide semiconductor layer and facing the source electrode with the channel region disposed between the drain electrode and the source electrode; a gate electrode to apply an electric field to the oxide semiconductor layer; and a gate insulating layer disposed between the gate electrode and the oxide semiconductor layer.
Abstract:
A photonic sensor includes a first electrode layer, a second electrode layer, a third electrode layer, a first photon absorption layer, a second photon absorption layer, a third photon absorption layer and a charge blocking layer. The first photon absorption layer includes a dispersion of first nanoparticles, and is configured to transduce a first colored light into corresponding electric charge. The second photon absorption layer includes a dispersion of second nanoparticles, and is configured to transduce a second colored light into corresponding electric charge according to light intensity. The third photon absorption layer includes a dispersion of third nanoparticles, and is configured to transduce a third colored light into corresponding electric charge according to light intensity. The charge blocking layer is formed between the first and second photon absorption layers to block flow of electric charge between the first and second photon absorption layers.
Abstract:
A sensor array substrate, a display device including the sensor array substrate, and a method of manufacturing the sensor array substrate are provided. The sensor array substrate includes a substrate, a first sensor formed on a first pixel area of the substrate and configured to detect light, an overcoat layer formed on the first sensor, and a shield layer formed over the overcoat layer, wherein the shield layer overlaps the first sensor.
Abstract:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.