Abstract:
A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.
Abstract:
A voltage variable material (“VVM”) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid (FR-4) laminate, a polyimide or a polymer. The VVM can also be directly applied to different types of substrates that are placed inside a device. In one embodiment, the VVM includes doped semiconductive particles having a core, such which can be silicon, and an inert coating, which can be an oxide. The particles are mixed in the binder with conductive particles.
Abstract:
A voltage variable material (“VVM”) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid FR-4 laminate, a polyimide, a polymer or a multilayer PCB via a process such as screen or stencil printing. In one embodiment, the VVM includes two types of conductive particles, one with a core and one without a core. The VVM can also have core-shell type semiconductive particles.
Abstract:
A system for remote control of live TV capability for TV screens, the system comprising satellite feeds (2003) broadcasting means (2002, 2004), a set top box (2005), a Smart-IB box (2006) capable of sending and receiving data/content, a central server capable of interpreting received data/content from Smart-IB, a communication network having interactive means coupled with world wide web (2008), a display screen (2007) having display means operable to display data/information. A method for remote control of live TV capability for TV screens, the method comprising the steps of receiving a schedule to record and/or relay set top box content, forwarding desired frequency to remote signal inducing means (RSIM), generating infrared (IR) signal, interpreting infrared (IR) signal by set top box, changing audio-video (AV) output as per the schedule list, recording/relaying audio-video (AV) output.
Abstract:
A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.