Non-vacuum method for fabrication of a photovoltaic absorber layer
    13.
    发明授权
    Non-vacuum method for fabrication of a photovoltaic absorber layer 失效
    用于制造光伏吸收层的非真空方法

    公开(公告)号:US08748216B2

    公开(公告)日:2014-06-10

    申请号:US13198744

    申请日:2011-08-05

    Abstract: The present invention provides a non-vacuum method of depositing a photovoltaic absorber layer based on electrophoretic deposition of a mixture of nanoparticles with a controlled atomic ratio between the elements. The nanoparticles are first dispersed in a liquid medium to form a colloidal suspension and then electrophoretically deposited onto a substrate to form a thin film photovoltaic absorber layer. The absorber layer may be subjected to optional post-deposition treatments for photovoltaic absorption.

    Abstract translation: 本发明提供了一种非真空方法,其基于在元件之间具有受控原子比的纳米颗粒的混合物的电泳沉积来沉积光伏吸收层。 首先将纳米颗粒分散在液体介质中以形成胶体悬浮液,然后电泳沉积到基底上以形成薄膜光伏吸收层。 可以对吸收层进行用于光伏吸收的任选的后沉积处理。

    Pulsed laser micro-deposition pattern formation
    14.
    发明授权
    Pulsed laser micro-deposition pattern formation 有权
    脉冲激光微沉积图案形成

    公开(公告)号:US08663754B2

    公开(公告)日:2014-03-04

    申请号:US12400438

    申请日:2009-03-09

    Abstract: A method of forming patterns on transparent substrates using a pulsed laser is disclosed. Various embodiments include an ultrashort pulsed laser, a substrate that is transparent to the laser wavelength, and a target plate. The laser beam is guided through the transparent substrate and focused on the target surface. The target material is ablated by the laser and is deposited on the opposite substrate surface. A pattern, for example a gray scale image, is formed by scanning the laser beam relative to the target. Variations of the laser beam scan speed and scan line density control the material deposition and change the optical properties of the deposited patterns, creating a visual effect of gray scale. In some embodiments patterns may be formed on a portion of a microelectronic device during a fabrication process. In some embodiments high repetition rate picoseconds and nanosecond sources are configured to produce the patterns.

    Abstract translation: 公开了使用脉冲激光在透明基板上形成图案的方法。 各种实施例包括超短脉冲激光器,对激光波长透明的衬底和靶板。 激光束被引导通过透明基板并聚焦在目标表面上。 目标材料被激光烧蚀并沉积在相对的基板表面上。 通过相对于目标扫描激光束来形成例如灰度图像的图案。 激光束扫描速度和扫描线密度的变化控制材料沉积并改变沉积图案的光学性质,产生灰度的视觉效果。 在一些实施例中,可以在制造过程期间在微电子器件的一部分上形成图案。 在一些实施例中,高重复率皮秒和纳秒源被配置为产生图案。

    Method for depositing crystalline titania nanoparticles and films
    15.
    发明授权
    Method for depositing crystalline titania nanoparticles and films 有权
    沉积结晶二氧化钛纳米粒子和薄膜的方法

    公开(公告)号:US08609205B2

    公开(公告)日:2013-12-17

    申请号:US12497205

    申请日:2009-07-02

    CPC classification number: C30B23/08 C23C14/083 C23C14/28 C30B29/16

    Abstract: A one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of metal oxides such as crystalline titanium dioxide (TiO2) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted.

    Abstract translation: 使用二氧化钛或金属钛靶的超快速脉冲激光烧蚀将金属氧化物如结晶二氧化钛(TiO 2)的纳米颗粒或纳米复合材料(纳米颗粒组装的)膜沉积到基底表面上的一步和室温方法。 该系统包括脉冲激光,其脉冲持续时间范围从几飞秒到几十皮秒,用于处理激光束的光学设置,使得光束以适当的平均能量密度和适当的能量聚焦到目标表面上 密度分布,以及真空室,其中安装了目标物和基质,背景气体及其压力被适当调节。

    NANOARCHITECTURED MULTI-COMPONENT ELECTRODE MATERIALS AND METHODS OF MAKING THE SAME
    16.
    发明申请
    NANOARCHITECTURED MULTI-COMPONENT ELECTRODE MATERIALS AND METHODS OF MAKING THE SAME 有权
    纳米结构的多组分电极材料及其制备方法

    公开(公告)号:US20120237828A1

    公开(公告)日:2012-09-20

    申请号:US13047242

    申请日:2011-03-14

    Abstract: At least one embodiment of the present invention provides preparation methods and compositions for nanoarchitectured multi-component materials based on carbon-coated iron-molybdenum mixed oxide as the electrode material for energy storage devices. A sol-gel process containing soluble organics is a preferred method. The soluble organics could become a carbon coating for the mixed oxide after thermal decomposition. The existence of the carbon coating provides the mixed oxide with an advantage in cycling stability over the corresponding carbon-free mixed oxide. For the carbon-coated mixed oxide, a stable cycling stability at high charge/discharge rate (3A/g) can be obtained with Mo/Fe molar ratios ≧1/3. The cycling stability and rate capability could be tuned by incorporating a structural additive such as Al2O3 and a conductive additive such as carbon nanotubes. The high rate performance of the multi-component material has been demonstrated in a full device with porous carbons as the positive electrode material.

    Abstract translation: 本发明的至少一个实施方案提供了基于碳涂覆的铁 - 钼混合氧化物作为储能装置的电极材料的纳米结构多组分材料的制备方法和组合物。 含有可溶性有机物的溶胶 - 凝胶法是优选的方法。 热分解后,可溶性有机物可能成为混合氧化物的碳涂层。 碳涂层的存在为混合氧化物提供了在相应的无碳混合氧化物上的循环稳定性的优点。 对于碳涂复合氧化物,可以以Mo / Fe摩尔比≥1/ 3获得高充放电速率(3A / g)下的稳定的循环稳定性。 循环稳定性和速率能力可以通过结合诸如Al 2 O 3的结构添加剂和诸如碳纳米管的导电添加剂来调节。 在具有多孔碳的正极材料的完整装置中已经证明了多组分材料的高速率性能。

    NON-VACUUM METHOD FOR FABRICATION OF A PHOTOVOLTAIC ABSORBER LAYER
    17.
    发明申请
    NON-VACUUM METHOD FOR FABRICATION OF A PHOTOVOLTAIC ABSORBER LAYER 失效
    用于制造光伏吸收层的非真空方法

    公开(公告)号:US20120098032A1

    公开(公告)日:2012-04-26

    申请号:US13198744

    申请日:2011-08-05

    Abstract: The present invention provides a non-vacuum method of depositing a photovoltaic absorber layer based on electrophoretic deposition of a mixture of nanoparticles with a controlled atomic ratio between the elements. The nanoparticles are first dispersed in a liquid medium to form a colloidal suspension and then electrophoretically deposited onto a substrate to form a thin film photovoltaic absorber layer. The absorber layer may be subjected to optional post-deposition treatments for photovoltaic absorption.

    Abstract translation: 本发明提供了一种非真空方法,其基于在元件之间具有受控原子比的纳米颗粒的混合物的电泳沉积来沉积光伏吸收层。 首先将纳米颗粒分散在液体介质中以形成胶体悬浮液,然后电泳沉积到基底上以形成薄膜光伏吸收层。 可以对吸收层进行用于光伏吸收的任选的后沉积处理。

    METHOD OF PRODUCING COMPOUND NANORODS AND THIN FILMS
    19.
    发明申请
    METHOD OF PRODUCING COMPOUND NANORODS AND THIN FILMS 审中-公开
    生产化合物和薄膜的方法

    公开(公告)号:US20100209700A1

    公开(公告)日:2010-08-19

    申请号:US12773104

    申请日:2010-05-04

    Abstract: A method of producing compound nanorods and thin films under a controlled growth mode is described. The method involves ablating compound targets using an ultrafast pulsed laser and depositing the ablated materials onto a substrate. When producing compound nanorods, external catalysts such as pre-deposited metal nanoparticles are not involved. Instead, at the beginning of deposition, simply by varying the fluence at the focal spot on the target, a self-formed seed layer can be introduced for nanorods growth. This provides a simple method of producing high purity nanorods and controlling the growth mode. Three growth modes are covered by the present invention, including nanorod growth, thin film growth, and nano-porous film growth.

    Abstract translation: 描述了在受控生长模式下制备复合纳米棒和薄膜的方法。 该方法包括使用超快速脉冲激光烧蚀化合物靶,并将消融材料沉积在基底上。 当制备复合纳米棒时,不涉及外部催化剂如预沉积的金属纳米颗粒。 相反,在沉积开始时,简单地通过改变目标上焦点处的注量,可以引入自形晶种层用于纳米棒生长。 这提供了生产高纯度纳米棒并控制生长模式的简单方法。 本发明涵盖三种生长方式,包括纳米棒生长,薄膜生长和纳米多孔膜生长。

    P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
    20.
    发明授权
    P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates 失效
    P型半导体氧化锌膜的制造方法以及使用透明基板的脉冲激光沉积法

    公开(公告)号:US07608308B2

    公开(公告)日:2009-10-27

    申请号:US11405020

    申请日:2006-04-17

    CPC classification number: C23C14/22 C23C14/083 C23C14/28

    Abstract: A p-type semiconductor zinc oxide (ZnO) film and a process for preparing the film are disclosed. The film is co-doped with phosphorous (P) and lithium (Li). A pulsed laser deposition scheme is described for use in growing the film. Further described is a process of pulsed laser deposition using transparent substrates which includes a pulsed laser source, a substrate that is transparent at the wavelength of the pulsed laser, and a multi-target system. The optical path of the pulsed laser is arranged in such a way that the pulsed laser is incident from the back of the substrate, passes through the substrate, and then focuses on the target. By translating the substrate towards the target, this geometric arrangement enables deposition of small features utilizing the root of the ablation plume, which can exist in a one-dimensional transition stage along the target surface normal, before the angular width of the plume is broadened by three-dimensional adiabatic expansion. This can provide small deposition feature sizes, which can be similar in size to the laser focal spot, and provides a novel method for direct deposition of patterned materials.

    Abstract translation: 公开了一种p型半导体氧化锌(ZnO)膜及其制备方法。 该膜与磷(P)和锂(Li)共掺杂。 描述脉冲激光沉积方案用于生长膜。 进一步描述的是使用透明衬底的脉冲激光沉积过程,其包括脉冲激光源,在脉冲激光的波长处是透明的衬底和多目标系统。 脉冲激光器的光路布置成使得脉冲激光从衬底的背面入射,穿过衬底,然后聚焦在靶上。 通过将基板朝向目标平移,这种几何布置可以在羽流的角宽度扩大之前利用消融羽流的根部沉积小特征,其可以沿着目标表面法线存在于一维过渡阶段中 三维绝热膨胀。 这可以提供小的沉积特征尺寸,其尺寸可以与激光焦点类似,并且提供用于直接沉积图案化材料的新颖方法。

Patent Agency Ranking