Abstract:
This invention provides a monochromator for reducing energy spread of a primary charged particle beam in charged particle apparatus, which comprises a beam adjustment element, two Wien-filter type dispersion units and an energy-limit aperture. In the monochromator, a double symmetry in deflection dispersion and fundamental trajectory along a straight optical axis is formed, which not only fundamentally avoids incurring off-axis aberrations that actually cannot be compensated but also ensures the exit beam have a virtual crossover which is stigmatic, dispersion-free and inside the monochromator. Therefore, using the monochromator in SEM can reduce chromatic aberrations without additionally incurring adverse impacts, so as to improve the ultimate imaging resolution. The improvement of the ultimate imaging resolution will be more distinct for Low-Voltage SEM and the related apparatuses which are based on LVSEM principle, such as the defect inspection and defect review in semiconductor yield management. The present invention also provides two ways to build a monochromator into a SEM, one is to locate a monochromator between the electron source and the condenser, and another is to locate a monochromator between the beam-limit aperture and the objective. The former provides an additional energy-angle depending filtering, and obtains a smaller effective energy spread.
Abstract:
The present invention generally relates to dynamic focus adjustment for an image system. With the assistance of a height detection sub-system, present invention provides an apparatus and methods for micro adjusting an image focusing according the specimen surface height variation by altering the field strength of an electrostatic lens between objective lens and sample stage/or a bias voltage applied to the sample surface. Merely by way of example, the invention has been applied to a scanning electron inspection system. But it would be recognized that the invention could apply to other system using charged particle beam as observation tool with a height detection apparatus.
Abstract:
The present invention relates to a multi-axis magnetic lens for a charged particle beam system. The apparatus eliminates the undesired non-axisymmetric transverse magnetic field components from the magnetic field generated by a common excitation coil and leaves the desired axisymmetric field for focusing each particle beam employed within the system.
Abstract:
Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit. Proton exchange membrane fuel cells and direct methanol fuel cells are developed by stacking the membrane electrode assemblies in a conventional manner.
Abstract:
The present invention relates to a defect review system, and/or particularly, to an apparatus and method of defect review sampling, review method and classification on a semiconductor wafer or a pattern lithography reticle during integrated circuit fabrication. These objects are achieved in comparing a reviewed image with a reference image pick-up through a smart sampling filter. A clustering computer system base on high speed network will provide data cache and save operation time and memory. A smart review sampling filter automatically relocate abnormal pattern or defects and classify the device location extracted from design database and/or from golden die image on the same substrate. The column of the present defect review system is comprised of the modified SORIL type objective lens. This column provides solution of improving throughput during sample review, material identification better image quality, and topography image of defect. One embodiment of the present invent adopts an optical auto focusing system to compromise micro height variation due wafer surface topography. And another embodiment adopts surface charge control system to regulate the charge accumulation due to electron irradiation during the review process.
Abstract:
A field-emission type electron source includes (i) a single-crystal tungsten rod having a sharpened terminus and (ii) a mass of ZrO formed only on a portion of the surface, or the entire surface, of the sharpened terminus. In preferred design, the single-crystal tungsten rod is placed in a gaseous medium that consists of oxygen and a non-oxygen gas. The molar ratio between oxygen and the non-oxygen gas is greater than 1:1.
Abstract:
The present invention provides an apparatus of charged-particle beam such as an electron microscope with co-condensers. A source of charged particles is configured to emit a beam of charged particles, and the co-condensers including two or more magnetic condensers are configured to coherently focus the beam to a single crossover spot. The invention exhibits numerous technical merits such as continuous image resolution tuning, and automatic switching between multiple resolutions, among others.
Abstract:
The present invention provides an apparatus of charged-particle beam such as an electron microscope with co-condensers. A source of charged particles is configured to emit a beam of charged particles, and the co-condensers including two or more magnetic condensers are configured to coherently focus the beam to a single crossover spot. The invention exhibits numerous technical merits such as continuous image resolution tuning, and automatic switching between multiple resolutions, among others.
Abstract:
A method of producing single or few-layer graphene comprises exfoliating graphite with a polymer to form a graphene-polymer composite and subsequently treating the composite to disassociate graphene. The exfoliation process is conducted using sonication. The graphene is disassociated from the polymer by a treatment step such as acid hydrolysis. The method results in highly pure graphene.
Abstract:
Electrocatalyst durability has been recently recognized as one of the most important issues that have to be addressed before the commercialization of the proton exchange membrane fuel cells (PEMFCs). The present invention is directed to a new class of cathode catalysts based on supportless platinum nanotubes (PtNTs) and platinum alloy nanotubes, for example, platinum-palladium nanotubes (PtPdNTs), that have remarkable durability and high catalytic activity. Due to their unique combination of dimensions at multiple length scales, the platinum nanotubes of the present invention can provide high platinum surface area due to their nanometer-sized wall thickness, and have the potential to eliminate or alleviate most of the degradation pathways of the commercial carbon supported platinum catalyst (Pt/C) and unsupported platinum-black (PtB) as a result of their micrometer-sized length. The platinum nanotube catalysts of the present invention asymptotically approach a maximum of about twenty percent platinum surface area loss in durability test, while the commercial PtB and Pt/C catalysts lose about fifty-one percent and ninety percent of their initial surface area, respectively. Moreover, the PtNT and PtPdNT catalysts of the present invention show higher mass activity and much higher specific activity than commercial Pt/C and PtB catalysts.