Abstract:
Embodiments of the present invention include methods of treating, preventing, and/or ameliorating a vascular disease and/or disorder in a diabetic or pre-diabetic patient. The methods include implanting a stent in a vascular region in a diabetic or pre-diabetic patient, and prior to and/or during the implantation procedure, delivering a lubricant formulation to the vascular region. The stent may be a bare metal stent, or a drug eluting stent, such as a metal stent with a coating including a drug, such as everolimus or sirolimus.
Abstract:
The present invention provides an implantable device having a coating including a slow dissolving polymer or material and the methods of making and using the same.
Abstract:
The present invention relates to the regional delivery of therapeutic agents for the treatment of vascular diseases wherein regional delivery refers to delivery of a therapeutically effective amount of the therapeutic agent to an area of the vessel that includes not only afflicted tissue but non-afflicted tissue at the periphery of the afflicted tissue as well.
Abstract:
Methods are disclosed for controlling the morphology and the release-rate of active agent from coating layers for medical devices comprising a polymer matrix and one or more active agents. The methods comprise fixing the morphology or phase distribution of the active agent prior to removing solvent from the coating composition. The coating layers can be used for controlled the delivery of an active agent or a combination of active agents.
Abstract:
A method of treating vascular disease in a patient is disclosed that comprises deploying a bioabsorbable polymer scaffold composed of a plurality of struts at a stenotic segment of an artery of a patient, wherein after the scaffold supports the segment at an increased diameter for a period of time the polymer degrades and is progressively replaced by de novo formation of malleable provisional matrix comprising proteoglycan, wherein as the scaffold becomes more malleable and becomes disconnected as it degrades, wherein following coverage of the struts by a neointima layer and loss of mechanical support provided by the scaffold, the scaffold is pulled outward by positive remodeling of the vessel wall of the scaffolded segment.
Abstract:
Embodiments of the present invention encompass methods of forming coatings, particularly coatings for medical devices, and more particularly, for braided or woven medical devices. Embodiments of the present invention encompass the coatings and the coated devices. The coatings may include a polymer and optionally a therapeutic agent.
Abstract:
Methods of making polymeric devices, such as stents, with one or more modifications such as addition of plasticizers, to improve processing, and the devices made by these methods.