Abstract:
Methods, systems, and media are provided for power management. The power management includes, but is not limited to storing at a computer system a history of canceled entries into a low power state that interrupted a transition of the unit from an active mode to the low power state and disallowing transition of the unit into the low power state when a number of canceled entries indicated by the history of canceled entries exceeds a canceled entry threshold.
Abstract:
Power gating decisions can be made based on measures of cache dirtiness. Analyzer logic can selectively power gate a component of a processor system based on a cache dirtiness of one or more caches associated with the component. The analyzer logic may power gate the component when the cache dirtiness exceeds a threshold and may maintains the component in an idle state when the cache dirtiness does not exceed the threshold. Idle time prediction logic may be used to predict a duration of an idle time of the component. The analyzer logic may then selectively power gates the component based on the cache dirtiness and the predicted idle time.
Abstract:
A method and apparatus for exiting a low power state based on a prior prediction is disclosed. An integrated circuit (IC) includes a functional unit configured to, during operation, cycle between intervals of an active state and intervals of an idle state. The IC also include a power management unit configured to place the functional unit in a low power state responsive to the functional unit entering the idle state. The power management unit is further configured to preemptively cause the functional unit to exit the low power state at a predetermined time after entering the low power. The predetermined time is based on a prediction of idle state duration made prior to entering the low power state. The prediction may be generated by a prediction unit, based on a history of durations of intervals in which the functional unit was in the idle state.
Abstract:
A method and apparatus for idle phase prediction in integrated circuits is disclosed. In one embodiment, an integrated circuit (IC) includes a functional unit configured to cycle between intervals of an active state and an idle state. The IC further includes a prediction unit configured to record a history of idle state durations for a plurality of intervals of the idle state. Based on the history of idle state durations, the prediction unit is configured to generate a prediction of the duration of the next interval of the idle state. The prediction may be used by a power management unit to, among other uses, determine whether to place the functional unit in a low power (e.g., sleep) state.
Abstract:
The described embodiments include a computing device with one or more entities (processor cores, processors, etc.). In some embodiments, during operation, a thermal power management unit in the computing device uses a linear prediction to compute a predicted duration of a next idle period for an entity based on the duration of one or more previous idle periods for the entity. Based on the predicted duration of the next idle period, the thermal power management unit configures the entity to operate in a corresponding idle state.