Abstract:
Multiple component package structures are described in which an interposer chiplet is integrated to provide fine routing between components. In an embodiment, the interposer chiplet and a plurality of conductive vias are encapsulated in an encapsulation layer. A first plurality of terminals of the first and second components may be in electrical connection with the plurality of conductive pillars and a second plurality of terminals of first and second components may be in electrical connection with the interposer chiplet.
Abstract:
A system that includes an integrated circuit die and a power supply decoupling unit is disclosed. The system includes an integrated circuit die, and interconnection region, and a decoupling unit. The integrated circuit die includes a plurality of circuits, which each include multiple devices interconnected using wires fabricated on a first plurality of conductive layers. The interconnection region includes multiple solder balls, and multiple conductive paths, each of which includes wires fabricated on a second plurality conductive layers. At least one solder ball is connected to an Input/Output terminal of a first circuit of the plurality of circuits via one of the conductive paths. The decoupling unit may include a plurality of capacitors and a plurality of terminals. Each terminal of the decoupling unit may be coupled to a respective power terminal of a second circuit of the plurality of circuits via the conductive paths.
Abstract:
In some embodiments, a semiconductor device package on package assembly may include a first package, a second package, and a third package. The first package may include a first surface, a second surface, a first die, and a first set of electrical conductors. The first set of electrical conductors may be configured to electrically connect the package on package assembly. The second package may include a third surface and a fourth surface, and a local memory module. The third surface may be coupled to the second surface. The first package may be electrically coupled to the second package. The third package may include a fifth surface and a sixth surface, and a main memory module. The fifth surface may be coupled to the fourth surface. The third package may be electrically coupled to the first package and/or the second package.
Abstract:
Multiple component package structures are described in which an interposer chiplet is integrated to provide fine routing between components. In an embodiment, the interposer chiplet and a plurality of conductive vias are encapsulated in an encapsulation layer. A first plurality of terminals of the first and second components may be in electrical connection with the plurality of conductive pillars and a second plurality of terminals of first and second components may be in electrical connection with the interposer chiplet.
Abstract:
Double side mounted package structures and memory modules incorporating such double side mounted package structures are described in which memory packages are mounted on both sides of a module substrate. A routing substrate is mounted to a bottom side of the module substrate to provide general purpose in/out routing and power routing, while signal routing from the logic die to double side mounted memory packages is provided in the module routing. In an embodiment, module substrate is a coreless module substrate and may be thinner than the routing substrate.
Abstract:
Package structure with folded die arrangements and methods of fabrication are described. In an embodiment, a package structure includes a first die and vertical interposer side-by-side. A second die is face down on an electrically connected with the vertical interposer, and a local interposer electrically connects the first die with the vertical interposer.
Abstract:
Double side mounted package structures and memory modules incorporating such double side mounted package structures are described in which memory packages are mounted on both sides of a module substrate. A routing substrate is mounted to a bottom side of the module substrate to provide general purpose in/out routing and power routing, while signal routing from the logic die to double side mounted memory packages is provided in the module routing. In an embodiment, module substrate is a coreless module substrate and may be thinner than the routing substrate.
Abstract:
Package structure with folded die arrangements and methods of fabrication are described. In an embodiment, a package structure includes a first die and vertical interposer side-by-side. A second die is face down on an electrically connected with the vertical interposer, and a local interposer electrically connects the first die with the vertical interposer.
Abstract:
Double side mounted package structures and memory modules incorporating such double side mounted package structures are described in which memory packages are mounted on both sides of a module substrate. A routing substrate is mounted to a bottom side of the module substrate to provide general purpose in/out routing and power routing, while signal routing from the logic die to double side mounted memory packages is provided in the module routing. In an embodiment, module substrate is a coreless module substrate and may be thinner than the routing substrate.
Abstract:
Integrated passive devices (IPDs), electronic packaging structures, and methods of testing IPDs are described. In an embodiment, an electronic package structure includes an IPD with an array of capacitor banks that are electrically separate in the IPD, and a package routing that includes an interconnect electrically connected to an IC and a plurality of the capacitor banks in parallel.