摘要:
Electronic apparatus and methods of forming the electronic apparatus include a hafnium lanthanide oxynitride film on a substrate for use in a variety of electronic systems. The hafnium lanthanide oxynitride film may be structured as one or more monolayers. Metal electrodes may be disposed on a dielectric containing a hafnium lanthanide oxynitride film.
摘要:
Some embodiments include memory cells having vertically-stacked charge-trapping zones spaced from one another by dielectric material. The dielectric material may comprise high-k material. One or more of the charge-trapping zones may comprise metallic material. Such metallic material may be present as a plurality of discrete isolated islands, such as nanodots. Some embodiments include methods of forming memory cells in which two charge-trapping zones are formed over tunnel dielectric, with the zones being vertically displaced relative to one another, and with the zone closest to the tunnel dielectric having deeper traps than the other zone. Some embodiments include electronic systems comprising memory cells. Some embodiments include methods of programming memory cells having vertically-stacked charge-trapping zones.
摘要:
Methods, devices, modules, and systems providing semiconductor devices in a stacked wafer system are described herein. One embodiment includes a first wafer for NMOS transistors in a CMOS architecture and a second wafer for PMOS transistors in the CMOS architecture, with the first wafer being bonded and electrically coupled to the second wafer to form at least one CMOS device. Another embodiment includes a number of DRAM capacitors formed on a first wafer and support circuitry associated with the DRAM capacitors formed on a second wafer, with the first wafer being bonded and electrically coupled to the second wafer to form a number of DRAM cells. Another embodiment includes a first wafer having a number of vertical transistors coupled to a data line and a second wafer having amplifier circuitry associated with the number of vertical transistors, with the first wafer being bonded and electrically coupled to the second wafer.
摘要:
Non-volatile memory devices and arrays are described that utilize dual gate (or back-side gate) non-volatile memory cells with band engineered gate-stacks that are placed above or below the channel region in front-side or back-side charge trapping gate-stack configurations in NAND memory array architectures. The band-gap engineered gate-stacks with asymmetric or direct tunnel barriers of the floating node memory cells of embodiments of the present invention allow for low voltage tunneling programming and efficient erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The memory cell architecture also allows for improved high density memory devices or arrays with the utilization of reduced feature word lines and vertical select gates.
摘要:
The invention includes optoelectronic devices containing one or more layers of semiconductor-enriched insulator (with exemplary semiconductor-enriched insulator being silicon-enriched silicon oxide and silicon-enriched silicon nitride), and includes solar cells containing one or more layers of semiconductor-enriched insulator. The invention also includes methods of forming optoelectronic devices and solar cells.
摘要:
Non-volatile memory devices and arrays are described that utilize reverse mode non-volatile memory cells that have band engineered gate-stacks and nano-crystal charge trapping in EEPROM and block erasable memory devices, such as Flash memory devices. Embodiments of the present invention allow a reverse mode gate-insulator stack memory cell that utilizes the control gate for programming and erasure through a band engineered crested tunnel barrier. Charge retention is enhanced by utilization of high work function nano-crystals in a non-conductive trapping layer and a high K dielectric charge blocking layer. The band-gap engineered gate-stack with symmetric or asymmetric crested barrier tunnel layers of the non-volatile memory cells of embodiments of the present invention allow for low voltage tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention.
摘要:
A memory cell embodiment includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode.
摘要:
The invention includes a memory device having a capacitor in combination with a transistor. The memory device can be within a TFT construction. The capacitor is configured to provide both area and perimeter components of capacitance for capacitive enhancement. The capacitor includes a reference plate which splits into at least two prongs. Each of the prongs is surrounded by a lateral periphery. A dielectric material extends around the lateral peripheries of the prongs, and a storage node surrounds an entirety of the lateral peripheries of the prongs. The storage node is separated from the reference plate by at least the dielectric material. Also, the invention includes electronic systems comprising novel capacitor constructions.
摘要:
Electronic apparatus and methods may include a hafnium tantalum oxynitride film on a substrate for use in a variety of electronic systems. The hafnium tantalum oxynitride film may be structured as one or more monolayers. The hafnium tantalum oxynitride film may be formed using atomic layer deposition. Metal electrodes may be disposed on a dielectric containing a hafnium tantalum oxynitride film.
摘要:
Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure. One embodiment includes a solid structure of an insulator material, and a precisely determined arrangement of at least one void formed within the solid structure which lowers an effective dielectric constant of the insulator structure. One aspect is a method of forming a low-k insulator structure. In one embodiment, an insulator material is deposited, and a predetermined arrangement of at least one hole is formed in a surface of the insulator material. The insulator material is annealed such that the low-k dielectric material undergoes a surface transformation to transform the arrangement of at least one hole into predetermined arrangement of at least one empty space below the surface of the insulator material. Other aspects are provided herein.