Abstract:
Embodiments of the disclosure provide a manufacturing method of a TFT array substrate, a TFT array substrate and a display device. The TFT array substrate comprises a thin film transistor and a pixel electrode formed on a base substrate, the pixel electrode is electrically connected with a drain electrode of the thin film transistor. The array substrate further comprises an light-shielding pattern provided above the thin film transistor.
Abstract:
An embodiment of the present disclosure provides an organic electroluminescent transistor array substrate, including a substrate, and a gate layer, a gate insulating layer, a semiconductor layer, a source layer, a pixel defining layer, an electroluminescent layer and a drain layer formed on the substrate, wherein, the source layer and the drain layer are located in different levels, the source layer includes plural source electrode units corresponding to sub-pixel units respectively, the pixel defining layer includes plural pixel defining units corresponding to the source electrode units respectively, and the respective source electrode units are embedded within the pixel defining units corresponding thereto.
Abstract:
A thin film transistor, a manufacturing method thereof, an array substrate and a display apparatus are disclosed. The manufacturing method includes forming a gate electrode (2), a gate insulating layer (3), an active region (4), a source electrode (5) and a drain electrode (6) on a base substrate (1) with the active region being formed of ZnON material, and implanting the active region (4) with nitrogen ion while it being formed, so as to make the sub-threshold swing amplitude of the thin film transistor less than or equal to 0.5 mV/dec. The manufacturing method reduces the sub-threshold swing amplitude of the thin film transistor and improves the semiconductor characteristics of the thin film transistor.
Abstract:
The present disclosure discloses a method and an apparatus for controlling image display, which achieve uniformity of image display and remove the image-retention in a compensation manner of high precision, high efficiency and low cost. The method for controlling image display comprises: reading gray scales of all sub-pixels of a current frame image displayed by a display device; determining an ideal luminance corresponding to the gray scale according to a predetermined ideal corresponding relationship between the gray scales and luminance of respective sub-pixels respectively; determining an adjusted gray scale corresponding to the ideal luminance according to the predetermined original corresponding relationship between the gray scales and the luminance of respective sub-pixels respectively; driving the display device to display the current frame image according to the adjusted gray scale.
Abstract:
A thin film transistor, a method for fabricating the same, an array substrate, and a display device are provided. The thin film transistor comprises a copper gate, a gate insulating layer, an active layer, a source, and a drain. The thin film transistor further comprises a copper alloy layer which is arranged on a side of the gate facing the active layer.
Abstract:
An array substrate and a fabrication method thereof, and a display device are provided. The array substrate comprises: a pattern of an organic light-emitting layer (11); a pattern of an active layer (4a) located in a thin film transistor region and a pattern of an absorbing layer (4b) located in an open region, which are arranged in a same layer, wherein, the pattern of the absorbing layer (4b) is located in a light outgoing direction of the pattern of the organic light-emitting layer (11), and is made of a transparent material having an ultraviolet absorbing function. In this way, the pattern of the absorbing layer located in the open region can absorb ultraviolet light from outgoing light, so that damage to eyes caused by the outgoing light can be reduced; and the pattern of the active layer and the pattern of the absorbing layer are arranged in a same layer, which, as compared with a manner of separately arranging a layer of an ultraviolet absorbing layer in the array substrate, can reduce a thickness of the array substrate, which is conducive to lighting and thinning a display device.
Abstract:
An anti-diffusion layer, a preparation method thereof, a thin-film transistor (TFT), an array substrate and a display device are provided, involve the display device manufacturing field and can resolve problem that a high atmosphere temperature is need in process of preparing a tantalum dioxide anti-diffusion layer by PVD or CVD, which causes the gate electrode to volatilize and affect the performance of a display device. The method for preparing the anti-diffusion layer comprises: placing a conductive base (1) and a cathode (4) in a electrolytic solution (3), taking the conductive base (1) as an anode, and forming a tantalum dioxide anti-diffusion layer on the conductive base (1) after energizing.
Abstract:
The application discloses a pixel driving circuit and a fabrication method thereof as well as an array substrate, the pixel driving circuit including a switching and a driving TFT, the method including: on a substrate, fabricating a gate, a gate insulation GI layer, an oxide semiconductor layer, and an etching stop ESL layer simultaneously in turn; depositing simultaneously source/drain metals of the switching TFT and the driving TFT, the drain metal of the switching TFT extending and covering the GI layer on the gate of the driving TFT by etching; depositing a protection layer; etching off the protection layer, the drain metal of the switching TFT and the GI layer at a via hole by using a via hole process, to expose the gate of the driving TFT; depositing an ITO layer connecting the drain of the switching TFT and the gate of the driving TFT at the via hole.
Abstract:
The present invention discloses a light-emitting display backplane, a display device and a manufacturing method of a pixel define layer. A light-emitting display backplane according to the present invention comprises: a substrate and a pixel define layer provided thereon, wherein said pixel define layer comprises: a first photosensitive resin layer, a first transparent define layer and a second transparent define layer sequentially provided on said substrate from bottom to top, each of the first photosensitive resin layer, the first define layer and the second define layer is provided with openings corresponding to respective pixels, and the openings in said second define layer are smaller than those in both said first define layer and said first photosensitive resin layer, so as to form luminescent material filling regions which are wider at bottom and narrower at top.
Abstract:
The present invention discloses a light-emitting display backplane, a display device and a manufacturing method of a pixel define layer. A light-emitting display backplane according to the present invention comprises: a substrate and a pixel define layer provided thereon, wherein said pixel define layer comprises: a first photosensitive resin layer, a first transparent define layer and a second transparent define layer sequentially provided on said substrate from bottom to top, each of the first photosensitive resin layer, the first define layer and the second define layer is provided with openings corresponding to respective pixels, and the openings in said second define layer are smaller than those in both said first define layer and said first photosensitive resin layer, so as to form luminescent material filling regions which are wider at bottom and narrower at top.