Abstract:
A printed circuit board includes a signal layer, a dielectric layer, and a reference layer. The signal layer includes a pair of differential signal lines. The dielectric layer is sandwiched between the signal layer and the reference layer. A first void is defined in the reference layer between projections of the pair of differential signal lines. Two second voids are defined in the reference layer at opposite sides of the projections of the pair of differential signal lines.
Abstract:
A printed circuit board (PCB) can prevent electrostatic discharge. A number of vias are embedded in the PCB. A circular insulated member is disposed between each via and the number of vias. Each via includes a layer of metal coated on an inner wall of a corresponding insulated member and a through hole bounded by the corresponding insulated member. An acute angle between two tangents which pass through a point of intersection of two overlapped insulated members is greater than twenty degrees.
Abstract:
A printed circuit board includes a first signal layer, a first reference layer, a second reference layer, and a second signal layer. An integrated circuit mounted on the first signal layer includes a power supply terminal connected to a first power supply via. The second signal layer includes a filter and a power supply wire. The filter includes a power terminal connected to the first power supply via, and a ground terminal connected to the second reference layer. The first power supply via is connected to the first reference layer through the power supply wire and a second power supply via. A void defined in the second reference layer is at least partially vertically overlapping with the power supply wire, and enables the first reference layer to function as a reference plane for the power supply wire, to increase impedance of the power supply wire.
Abstract:
An exemplary PCB includes a first reference layer, a first signal layer, and a second signal layer in that order. A first differential pair is arranged in the first signal layer in an edge-coupled structure referencing the first reference layer. A second differential pair is arranged in the second signal layer in edge-coupled structure. A first ground part and a second ground part are symmetrically arranged at opposite sides of the second differential pair in the second signal layer. The first differential pair is arranged above the first ground part and a projection of the first differential pair onto the second signal layer having an area coincident with the first ground part. The second differential pair references the first and second ground parts.
Abstract:
An electronic device reads a layout file of a printed circuit board (PCB) to be manufactured from a storage device, obtains length information and section area information of copper cladding distributed on power source areas and ground trace areas in each of one or more layers of the PCB to be manufactured by analyzing the layout file, and calculates power loss in each of the one or more layers according to the length information, the section area information, a resistance value of the copper cladding, and preset parameters of a power supply module and an integrated circuit (IC) load to be located on the PCB. In response to a determination that the power loss in the layer exceeds a preset range, the electronic device indicates the locations of the power source areas and the ground trace areas of a layer in the PCB layout file which need to be redesigned.
Abstract:
A printed circuit board (PCB) comprising a first circuit area, a second circuit area, a plurality of connecting elements, and a plurality of connecting terminals placed on the first circuit area, wherein the first circuit area are electrically connected to the second circuit area through the plurality of connecting elements, the plurality of connecting elements are arranged in sequence to extend toward the plurality of connecting terminals, to form shortest current paths from the second circuit area via corresponding one of the connecting elements to the connecting terminals, respectively, and each shortest current path between the corresponding one of the connecting elements and the corresponding one of the connecting terminals is uncoated with conductive material.
Abstract:
A printed circuit board includes a plurality of power layers. Each power layer defining a number of vias arranged in a number of rows. The number of the power layers is N (N>3). The power layers are defined as a 1st, 2nd, . . . , Nth power layer. The vias of the 1st power layer are connected to other power layers by a step-shaped connection means.
Abstract:
A system and method that can analyze a temperature rise of a printed circuit board (PCB). The system and method receives attribute parameters of the PCB from an input device, and generates a temperature rise formula according to the received attribute parameters. Additionally, the system and method calculates a temperature rise of a local area surrounding each component on the PCB according to the temperature rise formula.
Abstract:
A performance evaluation system for a multiple-input multiple-output (MIMO) antenna system receives simulation parameters from an input device, and simulates a MIMO antenna system accordingly. A method, also provided, further evaluates performance of the simulated MIMO antenna system when a series of radio frequency (RF) signals are transmitted through the MIMO antenna system, and displays a performance analysis result of the MIMO antenna system on a display device for evaluation of the performance of the simulated MIMO antenna system.
Abstract:
An equalizer includes a first resistor and a capacitor connected in parallel. The positive terminal of the capacitor is connected to a signal transmission line on a blah printed circuit board. The negative terminal of the capacitor is connected to ground through a second resistor. A connector including the equalizer and a printed circuit board including the connector are also provided.