Abstract:
An operation mode of an engine and after-treatment system is determined based on a reductant-to-fuel cost ratio. The operation mode optimizes fuel consumption and reductant consumption in an engine system including an internal combustion engine and a selective catalytic reduction (SCR) catalyst while satisfying a target emissions emission level.
Abstract:
An electronic control system controls operation of a vehicle system by selectably controlling the vehicle system using engine start-stop controls in response to one or more engine start-stop conditions being met, controlling the vehicle system using neutral-at-stop controls in response to one or more neutral-at-stop conditions being met, and controlling the vehicle system using cylinder deactivation controls in response to the one or more neutral-at-stop conditions not being met.
Abstract:
A system and method of integrating an engine having dynamic skip fire control with an exhaust gas recirculation system in a turbocharged internal combustion engine is described. An engine control system determines an appropriate firing pattern based at least in part on a desired exhaust gas recirculation flow rate. Signals from sensors in the intake manifold and exhaust system may also be used as part of a feedback loop to determine a desired exhaust gas recirculation flow rate.
Abstract:
A system is provided for performing an automated electrification operation for an electric vehicle (102) using a processor (122). An electrification controller (126) communicates with a model generation unit (128). The model generation unit (128) generates a model representative of a power consumption trend of the electric vehicle (102). The electrification controller (126) sets a target power margin for the electric vehicle (102) based on the model such that the target power margin is close to a minimum state-of-charge (SOC) threshold of an energy storage supply (124) of the electric vehicle (102). The target power margin represents a difference between the minimum SOC threshold and an ending power level of the energy storage supply (124) after completion of a mission associated with the electric vehicle (102). The processor (122) performs the automated electrification operation for the electric vehicle (102) based on the target power margin.
Abstract:
A hybrid electric vehicle system comprises an internal combustion (IC) engine and an electric engine providing power to a drive shaft of the vehicle. The IC engine receives a fuel from a fuel tank. Exhaust gases from the IC engine are treated at an exhaust treatment apparatus including a reagent tank containing a reagent. A controller monitors a quality of the fuel in the fuel tank and the reagent in the reagent tank and if needed, initiates fuel degradation reduction event or a reagent degradation reduction event. These events can include running the IC engine even if a battery supplying power to the motor is not discharged. The fuel degradation reduction event includes dosing the fuel tank with an antioxidant to reduce the rate of degradation of the fuel.
Abstract:
The present disclosure provides an engine stop/start control system for a vehicle comprising a first engine restart module configured to set a restart frequency and duration of an engine in response to a sensed ambient temperature, a second engine restart module configured to control the engine in response to a sensed characteristic temperature associated with the engine, a third engine restart module configured to control the engine in response to occurrence or non-occurrence of at least one expected charging event along a predefined route, a fourth engine restart module configured to control the engine in response to a state-of-charge of an energy storage device, and a route optimization module configured to set and adjust a proposed route to a destination that results in reduced engine usage.
Abstract:
A system is provided for performing an automated power charging process for one or more electric vehicles using a processor. Included in the processor is a charge controller that calculates a capacity of a power grid system by communicating with the power grid system via a network, and a power demand level of the one or more electric vehicles to satisfy one or more mission requirements of each electric vehicle. The power demand level of the one or more electric vehicles is compared with the capacity of the power grid system. In response to the comparison, at least one charging mode is selected from an override mode and an internal combustion engine mode for performing the automated power charging process. The charge controller automatically charges the one or more electric vehicles based on the selected at least one charging mode.
Abstract:
A system is provided for performing an automated power charging process for one or more electric vehicles using a processor. Included in the processor is a charge controller that calculates a capacity of a power grid system by communicating with the power grid system via a network, and a power demand level of the one or more electric vehicles to satisfy one or more mission requirements of each electric vehicle. The power demand level of the one or more electric vehicles is compared with the capacity of the power grid system. In response to the comparison, at least one charging mode is selected from an override mode and an internal combustion engine mode for performing the automated power charging process. The charge controller automatically charges the one or more electric vehicles based on the selected at least one charging mode.
Abstract:
A system and method of integrating an engine having dynamic skip fire control with an exhaust gas recirculation system in a turbocharged internal combustion engine is described. An engine control system determines an appropriate firing pattern based at least in part on a desired exhaust gas recirculation flow rate. Signals from sensors in the intake manifold and exhaust system may also be used as part of a feedback loop to determine a desired exhaust gas recirculation flow rate.
Abstract:
An electronic control system controls operation of a vehicle system by selectably controlling the vehicle system using engine start-stop controls in response to one or more engine start-stop conditions being met, controlling the vehicle system using neutral-at-stop controls in response to one or more neutral-at-stop conditions being met, and controlling the vehicle system using cylinder deactivation controls in response to the one or more neutral-at-stop conditions not being met.