Abstract:
An integrated circuit (IC) chip includes a first memory cell array block having a first metal layer containing at least two power lines, and a second memory cell array block containing at least two power lines independent of each other, wherein all the power lines on the first metal layer serving the first memory cell array block do not extend into the second memory cell array block, and all the power lines on the first metal layer serving the second memory cell array block do not extend into the first memory cell array block.
Abstract:
The present application discloses a memory circuit having a first data line configured to carry a first data line signal and a second data line configured to carry a second data line signal. Further, a first driver is coupled to the first data line and the second data line and configured to establish a first current path for the first data line responsive to the second data line signal. Similarly, a second driver is coupled to the first data line and the second data line and configured to establish a second current path for the second data line responsive to the first data line signal. The memory circuit further has a first driver enabling line configured to selectively enable the first driver and a second driver enabling line configured to selectively enable the second driver.
Abstract:
In some embodiments related to a memory array, a sense amplifier (SA) uses a first power supply, e.g., voltage VDDA, while other circuitry, e.g., signal output logic, uses a second power supply, e.g., voltage VDDB. Various embodiments place the SA and a pair of transferring devices at a local IO row, and a voltage keeper at the main IO section of the same memory array. The SA, the transferring devices, and the voltage keeper, when appropriate, operate together so that the data logic of the circuitry provided by voltage VDDB is the same as the data logic of the circuitry provided by voltage VDDA.
Abstract:
An SRAM includes circuitry configured for the SRAM to operate at different operation modes using different voltage levels wherein the voltage level and thus the supply current leakage is regulated based on the operation mode. For example, the SRAM, in a normal operation mode, consumes power as other SRAMs. In a deep sleep mode the supply voltage (e.g., VDDI) for the bit cell in the SRAM macro is lowered by about 20-40% of the SRAM supply voltage (e.g., VDD), sufficient to retain the data in the bit cell. When access to the SRAM is not needed, the SRAM operates in the sleep mode, consuming little or no power.
Abstract:
A semiconductor memory chip that has word lines driven by respective word line drivers and bit lines to carry signals to respective bit line amplifiers/drivers with memory cells at intersections of the word lines and bit lines memory cells. The semiconductor memory chip including various memory cell types, the type of memory cell at an intersection based on a position of the intersection among the word lines and bit lines.
Abstract:
A memory having a single-ended sensing scheme includes a bit line, a memory cell coupled to the bit line, and a precharge circuit. The precharge circuit is configured to precharge the bit line to a precharge voltage between a power supply voltage and a ground.
Abstract:
The layouts, device structures, and methods described above utilize dummy devices to extend the diffusion regions of edge structures and/or non-allowed structures to the dummy device. Such extension of diffusion regions resolves or reduces LOD and edge effect issues. In addition, treating the gate structure of a dummy device next to an edge device also allows only one dummy structure to be added next to the dummy device and saves the real estate on the semiconductor chip. The dummy devices are deactivated and their performance is not important. Therefore, utilizing dummy devices to extend the diffusion regions of edge structures and/or non-allowed structures according to design rules allows the resolution or reduction or LOD and edge effect issues without the penalty of yield reduction or increase in layout areas.
Abstract:
A word line decoder comprises a plurality of driver circuits, a plurality of word lines provided at respective outputs of the driver circuits, and a plurality of primary input lines coupled to the driver circuits and oriented in a first direction. The word line decoder also comprises a plurality of secondary input lines coupled to the driver circuits and oriented in the first direction. The word line decoder also comprises a local decode line coupled to each of the primary input lines. The word line decoder also comprises a decode line coupled to the local decode line and oriented in the first direction. A cluster decode line is coupled to the decode line. The word line decoder is configured to select at least one of the word lines based on signals provided by the cluster decode line and the secondary input lines.
Abstract:
The present application discloses a memory circuit having a first decoder coupled to a first memory bank and configured to receive a plurality of address control signals and to generate a first plurality of cell selection signals responsive to the plurality of address control signals and a second decoder coupled to a second memory bank and configured to receive a plurality of inverted address control signals and to generate a second plurality of cell selection signals responsive to the plurality of inverted address control signals. The memory circuit also has an address control signal buffer coupled to the second decoder and configured to convert the plurality of address control signals into the plurality of inverted address control signals.
Abstract:
An integrated circuit includes at least one memory array for storing data. A first switch is coupled with the memory array. A first power line is coupled with the first switch. The first power line is operable to supply a first power voltage. A second switch is coupled with the memory array. A second power line is coupled with the second switch. The second power line is operable to supply a second power voltage for retaining the data during a retention mode. A third power line is coupled with the memory array. The third power line is capable of providing a third power voltage.