摘要:
Alternative methods of fabricating an interconnect structure in which an enhanced diffusion barrier including an in-situ formed metal nitride liner formed between an interconnect dielectric material and an overlying metal diffusion barrier liner are provided. In one embodiment, the method includes forming at least one opening into an interconnect dielectric material. A nitrogen enriched dielectric surface layer is formed within exposed surfaces of the interconnect dielectric material utilizing thermal nitridation. A metal diffusion barrier liner is formed on the nitrogen enriched dielectric surface. During and/or after the formation of the metal diffusion barrier liner, a metal nitride liner forms in-situ in a lower region of the metal diffusion barrier liner. A conductive material is then formed on the metal diffusion barrier liner. The conductive material, the metal diffusion barrier liner and the metal nitride liner that are located outside of the at least one opening are removed to provide a planarized conductive material, a planarized metal diffusion barrier liner and a planarized metal nitride liner, each of which includes an upper surface that is co-planar with the nitrogen enriched dielectric surface layer of the interconnect dielectric material.
摘要:
An interconnect structure is provided that substantially eliminates electro-migration (EM) damage, a design structure and a method of manufacturing. The metal interconnect is formed in a dielectric material. A metal cap is selective to the metal interconnect. The metal cap includes RuX, where X is at Boron, Phosphorous or a combination of Boron and Phosphorous.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
摘要:
An interconnect structure is provided in which the conductive features embedded within a dielectric material are capped with a metallic capping layer, yet no metallic residue is present on the surface of the dielectric material in the final structure. The inventive interconnect structure has improved dielectric breakdown strength as compared to prior art interconnect structures. Moreover, the inventive interconnect structure has better reliability and technology extendibility for the semiconductor industry. The inventive interconnect structure includes a dielectric material having at least one metallic capped conductive feature embedded therein, wherein a top portion of said at least one metallic capped conductive feature extends above an upper surface of the dielectric material. A dielectric capping layer is located on the dielectric material and it encapsulates the top portion of said at least one metallic capped conductive feature that extends above the upper surface of dielectric material.
摘要:
Disclosed are embodiments of an improved high aspect ratio electroplated metal structure (e.g., a copper or copper alloy interconnect, such as a back end of the line (BEOL) or middle of the line (MOL) contact) in which the electroplated metal fill material is free from seams and/or voids. Also, disclosed are embodiments of a method of forming such an electroplated metal structure by lining a high aspect ratio opening (e.g., a high aspect ratio via or trench) with a metal-plating seed layer and, then, forming a protective layer over the portion of the metal-plating seed layer adjacent to the opening sidewalls so that subsequent electroplating occurs only from the bottom surface of the opening up.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A fuse/anti-fuse structure is provided in which programming of the anti-fuse is caused by an electromigation induced hillock that is formed adjacent to the fuse element. The hillock ruptures a thin diffusion barrier located on the sidewalls of the fuse element and the conductive material within the fuse element diffuses into the adjacent dielectric material. The fuse element includes a conductive material located within a line opening which includes a first diffusion barrier having a first thickness located on sidewalls and a bottom wall of the line opening. The anti-fuse element includes the conductive material located within a combined via and line opening which includes the first diffusion barrier located on sidewalls and a bottom wall of the combined via and line opening and a second diffusion barrier having a second thickness that is greater than the first thickness located on the first diffusion barrier.
摘要:
A local interconnect structure is provided in which a tungsten region, i.e., tungsten stud, that is formed within a middle-of-the-line (MOL) dielectric material is not damaged and/or contaminated during a multiple interconnect patterning process. This is achieved in the present disclosure by forming a self-aligned tungsten nitride passivation layer within a topmost surface and upper sidewalls portions of the tungsten region that extend above a MOL dielectric material which includes a first interconnect pattern formed therein. During the formation of the self-aligned tungsten nitride passivation layer, a nitrogen enriched dielectric surface also forms within exposed surface of the MOL dielectric material. A second interconnect pattern is then formed adjacent to, but not connect with, the first interconnect pattern. Because of the presence of the self-aligned tungsten nitride passivation layer on the tungsten region, no damaging and/or contamination of the tungsten region can occur.
摘要:
An interconnect structure including an alloy liner positioned directly between a diffusion barrier and a Cu alloy seed layer as well as methods for forming such an interconnect structure are provided. The alloy liner of the present invention is formed by thermally reacting a previously deposited diffusion barrier metal alloy layer with an overlying Cu alloy seed layer. During the thermal reaction, the metal alloys from the both the diffusion barrier and the Cu alloys seed layer react forming a metal alloy reaction product between the diffusion barrier and the Cu seed layer.