Abstract:
A level shifter includes: a voltage dividing unit receiving a first voltage and an input voltage, and generating a middle voltage between the first voltage and the input voltage; first and second voltage compensating units connected to the voltage dividing unit and connected between the first voltage and a second voltage, for compensating a voltage variation of the voltage dividing unit; and an output unit receiving an output from the voltage dividing unit and generating an output voltage.
Abstract:
In a display apparatus and a manufacturing method of the display apparatus, the display apparatus includes a display panel having signal lines and an insulating layer, and a signal generator electrically connected to the signal lines and adhering to the display panel. The signal lines include pads formed at ends thereof, respectively. The organic insulating layer is partially removed such that the via holes are formed between the pads of the signal lines to reduce a step-difference between an area in which the pads are formed and an area in which the pads are not formed. Thus, the display apparatus may enhance the coupling force between the signal generator and the display panel.
Abstract:
An amplifier includes a biasing section, first and second differential amplifying sections and an output section. The biasing section outputs first and second bias currents based on first and second power source voltages. The first differential amplifying section outputs a first amplified voltage based on the first bias current. The second differential amplifying section outputs a second amplified voltage based on the second bias current. The output section outputs the second power source voltage based on the first amplified voltage and the first power source voltage, and outputs the first power source voltage based on the second amplified voltage and the second power source voltage. Therefore, a variation of the threshold voltage is compensated to enhance display quality.
Abstract:
A water treatment apparatus capable of sterilizing a storage tank and a sterilizing and cleansing method thereof are disclosed. The water treatment apparatus includes: a filter unit purifying raw water; a storage tank connected to the filter unit and storing purified water which has been filtered through the filter unit; an electrolytic sterilizer installed between the filter unit and the storage tank, electrolyzing only purified water which has been filtered through at least a portion of the filter unit to generate sterilization water, and supplying the sterilization water to the storage tank; a drain unit connected to the storage tank and discharging water accommodated in the storage tank; and a control unit controlling a water purification mode of the filter unit and a sterilization mode through the electrolytic sterilizer and the drain unit.
Abstract:
An array substrate includes a display area including a plurality of pixels coupled to a plurality of gate lines and a plurality of data lines; a data driving unit, coupled to a fan-out unit and configured to drive the data lines; a first switching circuit between the display area and the data driving unit and configured to control the data lines to share electric charges in an image display mode; and a second switching circuit coupled to the fan-out unit via a fuse unit and configured to be disconnected from the fan-out unit in the image display mode.
Abstract:
An LCD and a driving method thereof include: data writing for applying a common voltage and a data voltage to a plurality of pixels; and sustaining for applying a shifted common voltage shifted by a predetermined level from the common voltage to the plurality of pixels for a sustain period during which the plurality of pixels emit light, corresponding to the data voltage. The shifted common voltage is shifted to an opposite polarity of a polarity of a gate-off voltage applied to the plurality of pixels to float the plurality of pixels. During a sustain period, a gate-source voltage of the switching transistor can be increased, and accordingly an influence due to the leakage current can be minimized, thereby preventing image deterioration. Further, since capacitance of the sustain capacitor can be reduced so that power consumption of the LCD can be reduced.
Abstract:
Disclosed is a method for fabricating a cliché that can prevent formation of a defective thin film pattern, and a method for forming a thin film pattern using the same. The method for fabricating a cliché includes providing a base substrate having first and second regions, forming a first depressed pattern having a first depth and a first width at a first region, and a second depressed pattern having a second width greater than the first width and a depth the same with the first depth at a second region, forming a protective film for exposing the second region and covering the first region, the protective film having adhesivity, forming the second depressed pattern to have a second depth deeper than the first depth of the first depressed pattern at the first region by using the protective film having the adhesivity, and removing the protective film.
Abstract:
A liquid crystal display apparatus and a method of driving the liquid crystal display apparatus, which commonly boosts pixels of a first group and commonly boosts pixels of a second group. The liquid crystal display apparatus includes a first group of pixels for displaying an image and a second group of pixels for displaying an image. Each pixel of the first and second groups includes a storage capacitor for storing a data voltage. The liquid crystal display apparatus further includes a first storage common voltage line connected to storage capacitors of the pixels of the first group of pixels, a second storage common voltage line connected to storage capacitors of the pixels of the second group of pixels. A first storage common voltage is supplied to the pixels of the first group through the first storage common voltage line, and a second storage common voltage is supplied to the pixels of the second group through the second storage common voltage line.
Abstract:
Provided is a method of producing 1,3-propanediol by culturing a recombinant strain in which the glycerol oxidative pathway had been blocked, and more particularly a method of producing 1,3-propanediol by two-step culture of a recombinant strain in which the oxidative pathway that produces byproducts in the glycerol metabolic pathway had been blocked. When the recombinant strain in which the glycerol oxidative pathway that produces byproducts had been blocked is cultured in two steps, 1,3-propanediol can be produced with improved yield without producing products that result in an increase in purification costs.
Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.