Abstract:
An apparatus, system, and method for controlling data transfer to an output port of a serial data link interface in a semiconductor memory is disclosed. In one example, a flash memory device may have multiple serial data links, multiple memory banks and control input ports that enable the memory device to transfer the serial data to a serial data output port of the memory device. In another example, a flash memory device may have a single serial data link, a single memory bank, a serial data input port, a control input port for receiving output enable signals. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices.
Abstract:
An apparatus, system, and computer-implemented method for controlling data transfer between a plurality of serial data link interfaces and a plurality of memory banks in a semiconductor memory is disclosed. In one example, a flash memory device with multiple links and memory banks, where the links are independent of the banks, is disclosed. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices. In addition, a virtual multiple link configuration is described wherein a single link is used to emulate multiple links.
Abstract:
A dynamic random access memory device includes a plurality of memory subblocks. Each subblock has a plurality of wordlines whereto a plurality of data store cells are connected. Partial array self-refresh (PASR) configuration settings are independently made. In accordance with the PASR settings, the memory subblocks are addressed for refreshing. The PASR settings are made by a memory controller. Any kind of combinations of subblock addresses may be selected. Thus, the memory subblocks are fully independently refreshed. User selectable memory arrays for data retention provide effective memory control programming especially for low power mobile application.
Abstract:
An apparatus, system, and computer-implemented method for controlling data transfer between a plurality of serial data link interfaces and a plurality of memory banks in a semiconductor memory is disclosed. In one example, a flash memory device with multiple links and memory banks, where the links are independent of the banks, is disclosed. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices. In addition, a virtual multiple link configuration is described wherein a single link is used to emulate multiple links.
Abstract:
A NAND flash memory bank having a plurality of bitlines of a memory array connected to a page buffer, where NAND cell strings connected to the same bitline are formed in at least two well sectors. At least one well sector can be selectively coupled to an erase voltage during an erase operation, such that unselected well sectors are inhibited from receiving the erase voltage. When the area of the well sectors decrease, a corresponding decrease in the capacitance of each well sector results. Accordingly, higher speed erasing of the NAND flash memory cells relative to a single well memory bank is obtained when the charge pump circuit drive capacity remains unchanged. Alternately, a constant erase speed corresponding to a single well memory bank is obtained by matching a well segment having a specific area to a charge pump with reduced drive capacity. A reduced drive capacity charge pump will occupy less semiconductor chip area, thereby reducing cost.
Abstract:
Device selection schemes in multi-chip package NAND flash memory systems are provided. A memory system is provided that has a memory controller, and a number of memory devices connected to the controller via a common bus with a multi-drop connection. The memory controller performs device selection by command. A corresponding memory controller is provided which performs device selection by command. Alternatively, device selection is performed by address. A memory device is provided use in memory system comprising a memory controller, and a number of memory devices inclusive of the memory device connected to the controller via a common bus with a multi-drop connection. The memory device has a register containing a device identifier, and a device identifier comparator that compares selected bits of a received input address to contents of the register to determine if there is a match. The memory device is selected if the device identifier comparator determines there is a match.
Abstract:
A dynamic random access memory device includes a plurality of memory subblocks. Each subblock has a plurality of wordlines whereto a plurality of data store cells are connected. Partial array self-refresh (PASR) configuration settings are independently made. In accordance with the PASR settings, the memory subblocks are addressed for refreshing. The PASR settings are made by a memory controller. Any kind of combinations of subblock addresses may be selected. Thus, the memory subblocks are fully independently refreshed. User selectable memory arrays for data retention provide effective memory control programming especially for low power mobile application.
Abstract:
A method and system for controlling an MBC configured flash memory device to store data in an SBC storage mode, or a partial MBC storage mode. In a full MBC storage mode, pages of data are programmed sequentially from a first page to an Nth page for each physical row of memory cells. Up to N virtual page addresses per row of memory cells accompany each page to be programmed for designating the virtual position of the page in the row. For SBC or partial MBC data storage, a flash memory controller issues program command(s) to the MBC memory device using less than the maximum N virtual page addresses for each row. The MBC memory device sequentially executes programming operations up to the last received virtual page address for the row.
Abstract:
An apparatus, system, and method for controlling data transfer to an output port of a serial data link interface in a semiconductor memory is disclosed. In one example, a flash memory device may have multiple serial data links, multiple memory banks and control input ports that enable the memory device to transfer the serial data to a serial data output port of the memory device. In another example, a flash memory device may have a single serial data link, a single memory bank, a serial data input port, a control input port for receiving output enable signals. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices.
Abstract:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.