Abstract:
Systems and methods for employing macroscopic resonant tunneling operations in quantum processors are described. New modes of use for quantum processor architectures employ probe qubits to determine energy eigenvalues of a problem Hamiltonian through macroscopic resonant tunneling operations. A dedicated probe qubit design that may be added to quantum processor architectures is also described. The dedicated probe qubit enables improved performance of macroscopic resonant tunneling operations and, consequently, improved performance of the new modes of use described.
Abstract:
SQUIDs may detect local magnetic fields. SQUIDS of varying sizes, and hence sensitivities may detect different magnitudes of magnetic fields. SQUIDs may be oriented to detect magnetic fields in a variety of orientations, for example along an orthogonal reference frame of a chip or wafer. The SQUIDS may be formed or carried on the same chip or wafer as a superconducting processor (e.g., a superconducting quantum processor). Measurement of magnetic fields may permit compensation, for example allowing tuning of a compensation field via a compensation coil and/or a heater to warm select portions of a system. A SQIF may be implemented as a SQUID employing an unconventional grating structure. Successful fabrication of an operable SQIF may be facilitated by incorporating multiple Josephson junctions in series in each arm of the unconventional grating structure.
Abstract:
A logical qubit, a quantum processor, and a method of performing an operation on the logical qubit are discussed. The logical qubit includes first and second tunable couplers and a plurality of fixed couplers, with at least one fixed coupler providing four physical qubit interaction. The first and second tunable couplers and the fixed couplers enforce even parity in any connected qubits. The logical qubit has a plurality of physical qubits with qubits connected to the first tunable coupler and a first fixed coupler, qubits connected to the second tunable coupler and a second fixed coupler, and qubits connected between the first fixed coupler and the second fixed coupler. Each fixed coupler is connected to at least two physical qubits and at least two paths connect the first tunable coupler and the second tunable coupler, with one path communicating with a microwave line.
Abstract:
Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
Abstract:
A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.
Abstract:
A system and method for mitigating flux trapping in a superconducting integrated circuit. A first metal layer is formed having a first critical temperature and a first device, and a flux directing layer is formed having a second critical temperature. The flux directing layer is positioned in communication with an aperture location, and the aperture location is spaced from the first device to isolate the first device from flux trapped in the aperture. The superconducting integrated circuit is cooled from a first temperature that is above both the first and second critical temperatures to a second temperature that is less than both the first and second critical temperatures by a cryogenic refrigerator. A relative temperature difference between the first and second critical temperatures causes the flux directing layer to direct flux away from the first device and trap flux at the aperture location.
Abstract:
Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures. Galvanic connections between DACs and/or with target devices are disclosed, as well as inductive connections.
Abstract:
A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.
Abstract:
Systems and methods for employing macroscopic resonant tunneling operations in quantum processors are described. New modes of use for quantum processor architectures employ probe qubits to determine energy eigenvalues of a problem Hamiltonian through macroscopic resonant tunneling operations. A dedicated probe qubit design that may be added to quantum processor architectures is also described. The dedicated probe qubit enables improved performance of macroscopic resonant tunneling operations and, consequently, improved performance of the new modes of use described.
Abstract:
A higher degree of interactions between qubits is realizable. This disclosure generally relates to devices, and architectures for quantum instruments comprising quantum devices and techniques for operating the same. Systems and processors for creating and using higher degree interactions between qubits may be found herein. Higher order interactions include interactions among three or more qubits. Methods for creating and using higher degree interactions among three or more qubits on a quantum processor may be found herein.