Systems, methods and apparatus for measuring magnetic fields
    12.
    发明授权
    Systems, methods and apparatus for measuring magnetic fields 有权
    用于测量磁场的系统,方法和装置

    公开(公告)号:US09335385B2

    公开(公告)日:2016-05-10

    申请号:US14462200

    申请日:2014-08-18

    CPC classification number: G01R33/0354 G01R33/0017 G01R33/0094

    Abstract: SQUIDs may detect local magnetic fields. SQUIDS of varying sizes, and hence sensitivities may detect different magnitudes of magnetic fields. SQUIDs may be oriented to detect magnetic fields in a variety of orientations, for example along an orthogonal reference frame of a chip or wafer. The SQUIDS may be formed or carried on the same chip or wafer as a superconducting processor (e.g., a superconducting quantum processor). Measurement of magnetic fields may permit compensation, for example allowing tuning of a compensation field via a compensation coil and/or a heater to warm select portions of a system. A SQIF may be implemented as a SQUID employing an unconventional grating structure. Successful fabrication of an operable SQIF may be facilitated by incorporating multiple Josephson junctions in series in each arm of the unconventional grating structure.

    Abstract translation: SQUID可以检测局部磁场。 具有不同尺寸的SQUIDS,因此灵敏度可以检测不同的磁场强度。 SQUID可以被定向以检测各种取向中的磁场,例如沿着芯片或晶片的正交参考系。 SQUIDS可以与超导处理器(例如超导量子处理器)形成或携带在相同的芯片或晶片上。 磁场的测量可以允许补偿,例如允许通过补偿线圈和/或加热器对补偿场进行调谐以温暖系统的选择部分。 SQIF可以被实现为采用非常规光栅结构的SQUID。 可以通过将多个约瑟夫逊结串联在非常规光栅结构的每个臂中来促进可操作的SQIF的成功制造。

    Topologically protected qubits, processors with topologically protected qubits, and methods for use of topologically protected qubits

    公开(公告)号:US12224750B2

    公开(公告)日:2025-02-11

    申请号:US17883874

    申请日:2022-08-09

    Abstract: A logical qubit, a quantum processor, and a method of performing an operation on the logical qubit are discussed. The logical qubit includes first and second tunable couplers and a plurality of fixed couplers, with at least one fixed coupler providing four physical qubit interaction. The first and second tunable couplers and the fixed couplers enforce even parity in any connected qubits. The logical qubit has a plurality of physical qubits with qubits connected to the first tunable coupler and a first fixed coupler, qubits connected to the second tunable coupler and a second fixed coupler, and qubits connected between the first fixed coupler and the second fixed coupler. Each fixed coupler is connected to at least two physical qubits and at least two paths connect the first tunable coupler and the second tunable coupler, with one path communicating with a microwave line.

    SYSTEMS AND METHODS FOR FABRICATING SUPERCONDUCTING INTEGRATED CIRCUITS

    公开(公告)号:US20230004851A1

    公开(公告)日:2023-01-05

    申请号:US17782261

    申请日:2020-12-03

    Abstract: A system and method for mitigating flux trapping in a superconducting integrated circuit. A first metal layer is formed having a first critical temperature and a first device, and a flux directing layer is formed having a second critical temperature. The flux directing layer is positioned in communication with an aperture location, and the aperture location is spaced from the first device to isolate the first device from flux trapped in the aperture. The superconducting integrated circuit is cooled from a first temperature that is above both the first and second critical temperatures to a second temperature that is less than both the first and second critical temperatures by a cryogenic refrigerator. A relative temperature difference between the first and second critical temperatures causes the flux directing layer to direct flux away from the first device and trap flux at the aperture location.

    SYSTEMS AND METHODS FOR HYBRID ANALOG AND DIGITAL PROCESSING OF A COMPUTATIONAL PROBLEM USING MEAN FIELD UPDATES

    公开(公告)号:US20200311591A1

    公开(公告)日:2020-10-01

    申请号:US16830650

    申请日:2020-03-26

    Abstract: A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.

Patent Agency Ranking