Abstract:
The present disclosure provides for a liquid transition metal chelating polyol blend that can be used in an isocyanate-reactive composition and a reaction mixture for forming a polyurethane polymer. The liquid transition metal chelating polyol blend includes a polyol, a transition metal compound having a transition metal ion and a chelating agent having a nitrogen based chelating moiety, where the liquid transition metal chelating polyol blend has a molar ratio of nitrogen in the nitrogen based chelating moiety to the transition metal ion of 8:1 to 1:1 (moles nitrogen:moles of transition metal ion).
Abstract:
Recovery times and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are characterized in being incompatible with polyol or polyol mixture used to make the foam, having a viscosity of at least 5,000 centipoise at 25 #C and having a glass transition temperature of at most 20 #C. The tackifier is pre-blended with certain monols to form a lower-viscosity blend that is combined with one or more other polyols and a polyisocyanate to form a reaction mixture for producing a polyurethane foam.
Abstract:
A solvent consisting essentially of: (A) a first component consisting of N,N-diethylacetamide (DEAC); (B) a second component consisting of 3-methoxy-N, N-dimethyl propionamide (M3DMPA); and (C) an optional third component consisting of one or more glycol ethers or glycol ether acetates; or a solvent consisting essentially of: (1) a first component consisting of one or more acyclic amides of Formula (I): and (2) an optional second component consisting of one or more of DEAC, M3DMPA, N,N-dimethylpropionamide, one or more glycol ethers or glycol ether acetates, and one or more cyclic amides of Formulae (II-IV).
Abstract:
The process for synthesizing a poly(amic acid) polymer or a polyimide polymer is improved by using a solvent system consisting essentially of: (A) a first component consisting essentially of at least one of a sulfoxide, e.g., DMSO, and an alkyl phosphate, e.g., triethyl phosphate, and (B) optionally, a second component consisting essentially of at least one aprotic glycol ether, e.g., dipropylene glycol dimethyl ether.
Abstract:
An asymmetric hollow fiber (CMS) carbon molecular sieve is made by providing a dope solution comprised of a polvimide and a solvent, at a temperature greater than 250° C. that is less than the storage modulus at a temperature of 250° C., but no more than ten times less as measured using dynamic mechanical thermal analysis from 250° C. to a temperature where the polyimide carbonizes. The polvimide is shaped into a hollow polvimide fiber, the solvent removed and the polyimide hollow fiber is heated to pyroiyze the polvimide and form the asymmetric hollow carbon molecular sieve. The asymmetric hollow fiber carbon molecular sieve has a wall that is defined by an inner surface and outer surface of said fiber and the wall has an inner porous support region extending from the inner surface to an outer raicroporous separation region that extends from the inner porous support region to the outer surface. Surprisingly, when the polyimide has the particular storage modulus characteristics, the method allows for the hollow fiber CMS to be made without any pre-treatmenis or additives to inhibit stractural collapse of the inner microporous region.
Abstract:
The process for synthesizing a poly(amic acid) polymer or a polyimide polymer is improved by using a solvent system consisting essentially of: (A) a first component consisting essentially of at least one of a sulfoxide, e.g., DMSO, and an alkyl phosphate, e.g., triethyl phosphate, and (B) optionally, a second component consisting essentially of at least one aprotic glycol ether, e.g., dipropylene glycol dimethyl ether.
Abstract:
Disclosed are polyolefin copolymer films comprising alkoxysilane groups and a catalyst for crosslinking the alkoxysilane groups; wherein the crosslinking catalyst is a Lewis or Bronsted acid or base compound that has a relatively high melting point and therefore initiates the crosslinking essentially only at the lamination temperature, preferably at or above at least 50° C. Also disclosed are films wherein (i) the layer or layers comprising the alkoxysilane groups, including surface layer(s), comprise the crosslinking catalyst; or (ii) layer or layers comprising alkoxysilane groups do not contain crosslinking catalyst and have a facial surface in adhering contact with a layer of a thermoplastic polyolefin copolymer comprising the crosslinking catalyst; or (iii) there is a combination of layers (i) and (ii). Also disclosed are laminated glass structures and processes for their preparation that employ such films. The disclosed laminate structures include safety glass and photovoltaic modules.
Abstract:
The present invention provides amphiphilic comb polymer compositions of phosphorus acid group containing backbone polymers of methacrylic anhydride having hydrophobic alkyl, aryl, cycloalkyl or polyolefin ester or amide side chain groups formed on the backbone polymers and comprising from 75 to 100 wt. %, based on the total weight of monomers used to make the backbone polymer, of methacrylic acid polymerized units, wherein in the backbone polymer from 20 to less than 70 wt. %, preferably from 50 to 67 wt. % of the methacrylic acid polymerized units comprise methacrylic anhydride groups as determined by titration of the backbone polymer. As polymeric additives, the polymers can compatibilize polyolefins and polar polymers like polyesters.
Abstract:
A water-insoluble copolymer including an epoxide containing structural unit represented by Formula (I), wherein: the epoxide containing group is positioned meta, ortho or para on the ring relative to the bond linkage with the polymer backbone; L is an optional linking group; and R1, R2 and R3 are independently selected from: hydrogen, or a substituted or unsubstituted hydrocarbyl group.
Abstract:
The invention relates to functionalized interpolymers derived from base olefin interpolymers, which are prepared by polymerizing one or more monomers or mixtures of monomers, such as ethylene and one or more comonomers, to form an interpolymer products having unique physical properties. The functionalized olefin interpolymers contain two or more differing regions or segments (blocks), resulting in unique processing and physical properties.