摘要:
A silicon epitaxial layer is formed on the semiconductor underlayer of a target substrate (W) in the process chamber (2). This forming method includes a pressure reducing step of reducing the pressure inside the process chamber (2) accommodating the target substrate (W), a vapor phase growth step of introducing a film formation gas containing silane gas into the process chamber (2) to grow a silicon epitaxial layer on the semiconductor underlayer, and a hydrogen chloride treatment step and a hydrogen heat treatment step performed therebetween. The hydrogen chloride treatment step is arranged to introduce the first pre-treatment gas containing hydrogen chloride gas into the process chamber (2), thereby treating the atmosphere inside the process chamber (2). The hydrogen heat treatment step is arranged to introduce the second pre-treatment gas containing hydrogen gas into the process chamber (2), thereby treating the surface of the semiconductor underlayer.
摘要:
A method for heat treatment of a silicon wafer in a reducing atmosphere through use of a rapid thermal annealer (RTA) is provided. In the method, the silicon wafer is heat-treated at a temperature of 1150° C. to 1300° C. for 1 sec to 60 sec in a mixture gas atmosphere of hydrogen and argon. Hydrogen is present in the mixture gas atmosphere in an amount of 10% to 80% by volume. Hydrogen is preferably present in the mixture gas atmosphere in an amount of 20% to 40% by volume. The method decreases COP density on the surface of the silicon wafer to thereby improve electrical characteristics, such as TZDB and TDDB, of the silicon wafer, suppresses the generation of slip dislocation to thereby prevent wafer breakage, and utilizes intrinsic advantages of the RTA, such as improvement in productivity and reduction in hydrogen gas usage.
摘要:
A method of making an identification card which comprises making any required characters, designs and/or embossings on the base material of the card, further providing a colored layer on the bass material of the card and then engraving the colored layer and base to varying depths in the form of fine lines and and points so that, by regulating the ratio of the surface areas of the engraved part and unengraved part, the differences in the color thickness and luster may be expressed to form an engraved image by which the user can be identified and which image has no projections thereon.
摘要:
The present invention is directed to a method for manufacturing an SOI wafer, the method by which treatment that removes the outer periphery of a buried oxide film to obtain a structure in which a peripheral end of an SOI layer of an SOI wafer is located outside a peripheral end of the buried oxide film, and, after heat treatment is performed on the SOI wafer in a reducing atmosphere containing hydrogen or an atmosphere containing hydrogen chloride gas, an epitaxial layer is formed on a surface of the SOI layer. As a result, there is provided a method that can manufacture an SOI wafer having a desired SOI layer thickness by performing epitaxial growth without allowing a valley-shaped step to be generated in an SOI wafer with no silicon oxide film in a terrace portion, the SOI wafer fabricated by an ion implantation delamination method.
摘要:
The present invention is directed to a method for producing a bonded wafer, the method in which heat treatment for flattening the surface of a thin film is performed on a bonded wafer made by the ion implantation delamination method in an atmosphere containing hydrogen or hydrogen chloride, wherein the surface of a susceptor on which the bonded wafer is to be placed, the susceptor used at the time of flattening heat treatment, is coated with a silicon film in advance. As a result, a method for producing a bonded wafer is provided, the method by which a bonded wafer having a thin film with good film thickness uniformity can be obtained even when heat treatment for flattening the surface of a thin film of a bonded wafer after delamination is performed in the ion implantation delamination method.
摘要:
The present invention is a method for producing a semiconductor substrate, including steps of forming a SiGe gradient composition layer and a SiGe constant composition layer on a Si single crystal substrate, flattening a surface of the SiGe constant composition layer, removing a natural oxide film on the flattened surface of the SiGe constant composition layer, and forming a strained Si layer on the surface of the SiGe constant composition layer from which the natural oxide film has been removed, wherein the formation of the SiGe gradient composition layer and the formation of the SiGe constant composition layer are performed at a temperature T1 that is higher than 800° C., the removal of the natural oxide film from the surface of the SiGe constant composition layer is performed in a reducing atmosphere through a heat treatment at a temperature T2 that is equal to or higher than 800° C. and lower than the temperature T1, and the formation of the strained Si layer is performed at a temperature T3 that is lower than the temperature T1. This method enables epitaxial growth of the strained Si layer on the flattened SiGe layer without degrading surface flatness of the SiGe layer.
摘要:
According to the present invention, there is provided a method for manufacturing an SOI wafer, the method configured to grow an epitaxial layer on an SOI layer of the SOI wafer having the SOI layer on a BOX layer to increase a thickness of the SOI layer, wherein epitaxial growth is carried out by using an SOI wafer whose infrared reflectance in an infrared wavelength range of 800 to 1300 nm falls within the range of 20% to 40% as the SOI wafer on which the epitaxial layer is grown. As a result, a high-quality SOI wafer with less slip dislocation and others can be provided with excellent productivity at a low cost as the SOI wafer including the SOI layer having a thickness increased by growing the epitaxial layer, and a manufacturing method thereof can be also provide.
摘要:
According to the present invention, there is provided a manufacturing method of a strained Si substrate including at least steps of: forming a lattice-relaxed SiGe layer on a silicon single crystal substrate; flattening a surface of the SiGe layer by CMP; and forming a strained Si layer on the surface of the flattened SiGe layer, wherein the method comprises steps of: subjecting the surface of the SiGe layer to SC1 cleaning, before forming the strained Si layer on the lattice-relaxed SiGe layer surface that is flattened; heat-treating the substrate having the SiGe layer after being subjected to SC1 cleaning in a hydrogen-containing atmosphere at 800° C. or higher; immediately forming a protective Si layer on the SiGe layer surface on the heat-treated substrate, without lowering the temperature below 800° C. after the heat treatment; and forming the strained Si layer on the surface of the protective Si layer at a temperature lower than the temperature of forming the protective Si layer. Thereby, a manufacturing method of a strained Si substrate having low surface roughness, threading dislocation density and low particle level can be provided.
摘要:
The disclosed apparatus weighs a grown crystal that is being pulled from melt thereof. The lower end of a rope of known weight is connected to the crystal, while the upper end of the rope is connected to the drum of a rope-winding unit. The rope-winding unit includes a driver coupled to the drum so as to rotate the drum and wind the rope thereon, and the weight of the rope-winding unit including the drum and driver is known. At least one weight sensor is coupled to the rope-winding unit so as to measure the magnitude of gravity acting on the rope-winding unit. Whereby, the weight of the grown crystal is determined by subtracting the sum of the known weights of the rope and the rope-winding unit from the measured magnitude of the gravity acting on the rope-winding unit.