摘要:
In a programmable device employing antifuses, first digital logic transistors the gates of which will experience a programming voltage Vpp have a greater gate insulator thickness than do second digital logic transistors the gates of which will not experience the programming voltage. The first digital logic transistors may be logic module input device transistors. The first digital logic transistors may be transistors coupled to an enable input lead where the enable input lead is couplable to a tie-high conductor or to a tie-low conductor depending on which of two antifuses is programmed.
摘要:
A package-on-package (POP) secure module includes a BGA mesh cap, a first BGA package, and a second BGA package. The first BGA package includes a first integrated circuit (for example, a microcontroller that includes tamper detect logic). The second BGA package includes a second integrated circuit (for example, a memory). The second BGA package is piggy-back mounted to the first BGA package and the BGA mesh cap is piggy-back mounted to the second BGA package. A printed circuit board substrate member of the BGA mesh cap includes an embedded anti-tamper mesh. This mesh is connected in a protected manner within the module to the first integrated circuit. When the module is in use, a mesh embedded in an underlying printed circuit board is coupled to the BGA cap mesh so that both anti-tamper meshes are controlled by the tamper detect logic.
摘要:
The programmable logic of a programmable device is sectioned into four logic regions. Each logic region includes logic elements and a programmable interconnect structure employing antifuses for programmably interconnecting selected ones of those logic elements. Programming conductors for supplying programming current to antifuses of a logic region extend across the logic region but do not extend across other logic regions. Similarly, programming control conductors that control programming transistors of the logic region extend across the logic region but do not extend across other logic regions. The programmable device structure allows four antifuses to be programmed simultaneously, one antifuse in each logic region. An antifuse can be selected for simultaneous programming from a logic region, irrespective of the other three antifuses that are or may be selected for simultaneous programming from the other three logic regions. Four programming current multiplexers and four programming buses are provided for each logic region so that the programming current that programs each antifuse flows from a separate input terminal. The resistance of the programming conductors is reduced by the use of parallel strips of metal in multiple metal layers.
摘要:
To protect logic module output devices from high voltages, logic modules are not powered during antifuse programming. In some embodiments, two separate power input terminals VCC1 and VCC2 are provided: power input terminal VCC1 being coupled to power the logic modules, and power input terminal VCC2 being coupled to power the programming control circuitry. Power terminal VCC1 is left floating or is grounded during antifuse programming such that the logic modules are not powered but such that the programming circuitry is powered during antifuse programming via the second power terminal VCC2. Logic module output protection transistors are not required nor is the associated charge pump. Because the logic module input devices are not powered, a current surge through the input devices on power up does not occur and an internal disable signal and associated circuitry is not required. In one embodiment, the field programmable gate array is made smaller because it has no internal disable signal and associated circuitry, no logic module output protection transistors, and no charge pump that operates during normal circuit operation. In embodiments, power input terminal VCC2 is a high voltage compatible power input terminal.
摘要:
A clock network of a field programmable gate array has a first clock bus extending across the chip in a first dimension. A clock pad can be coupled to the first clock bus if the clock network is to be driven from the clock pad. An output of a selected logic cell can be coupled to the first clock bus if the clock network is to be driven from a logic cell. To increase speed of the clock network, the first clock bus is segmented (in one embodiment, collinearly extending segments can be selectively coupled together via selectively programmable antifuses) so that only a short piece of the first clock bus is used to couple either the pad or the logic cell to the clock network in high speed applications.